Python C扩展实践&性能对比

C扩展实践

因为性能等一些原因,希望用C来扩展python。有多种方法,例如:

  • ctypes调用so
  • cython
  • python接口的C函数

这里阐述最后一种方式的实现。

  1. 首先需要 #include
  2. 需要实现下面三个函数:
static PyObject *funcName(PyObject *self, PyObject *args)
    /* 函数定义 */
static PyMethodDef methodsList[]
    /* 方法映射 */
PyMODINIT_FUNC initModule()
    /* Module初始化(python3 Module的定义和初始化略有不同,见下面示例代码) */

完整代码:

#include 
#include 

#define PI acos(-1)

#if PY_MAJOR_VERSION >= 3
#define PY3K
#endif

void initcmath(void); /* Forward */

main(int argc, char **argv)
{
    /* Pass argv[0] to the Python interpreter */
    Py_SetProgramName(argv[0]);

    /* Initialize the Python interpreter.  Required. */
    Py_Initialize();

    /* Add a static module */
    initcmath();

    /* Define sys.argv.  It is up to the application if you
       want this; you can also leave it undefined (since the Python
       code is generally not a main program it has no business
       touching sys.argv...)

       If the third argument is true, sys.path is modified to include
       either the directory containing the script named by argv[0], or
       the current working directory.  This can be risky; if you run
       an application embedding Python in a directory controlled by
       someone else, attackers could put a Trojan-horse module in the
       directory (say, a file named os.py) that your application would
       then import and run.
    */
    PySys_SetArgvEx(argc, argv, 0);

    /* Do some application specific code */
    printf("Hello, brave new world\n\n");

    /* Execute some Python statements (in module __main__) */
    PyRun_SimpleString("import sys\n");
    PyRun_SimpleString("print sys.builtin_module_names\n");
    PyRun_SimpleString("print sys.modules.keys()\n");
    PyRun_SimpleString("print sys.executable\n");
    PyRun_SimpleString("print sys.argv\n");

    /* Note that you can call any public function of the Python
       interpreter here, e.g. call_object(). */

    /* Some more application specific code */
    printf("\nGoodbye, cruel world\n");

    /* Exit, cleaning up the interpreter */
    Py_Exit(0);
    /*NOTREACHED*/
}

int fastfactorial(int n){
 if(n<=1)
 return 1;
 else
 return n * fastfactorial(n-1);
}

double calculatearea(float r){
    double s;
    float r1, r2, r3, r4, r5;

    r1 = cosf(r);
    r2 = sinf(r);
    r3 = log10(r);
    r4 = PI;
    r5 = 666.666;
    r = (((r1 + r2) - r3) * r4)/r5;

    s = PI * pow(r, 2);
    return s;
}

static PyObject* factorial(PyObject* self, PyObject* args){
int n;
if (!PyArg_ParseTuple(args,"i",&n))
  return NULL;
int result = fastfactorial(n);
return Py_BuildValue("i",result);
}

static PyObject* do_calculation(PyObject* self, PyObject* args){
float n;
if (!PyArg_ParseTuple(args,"f",&n))
  return NULL;
double result = calculatearea(n);
return Py_BuildValue("d",result);
}

static PyMethodDef mainMethods[] = {
 {"factorial", factorial, METH_VARARGS, "Calculate the factorial of n"},
 {"do_calculation", do_calculation, METH_VARARGS, "Calculate the area of r"},
 {NULL, NULL, 0, NULL}
};

#ifdef PY3K
// module definition structure for python3
static PyModuleDef cmath = {
 PyModuleDef_HEAD_INIT,
 "cmath","Factorial Calculation",
 -1,
 mainMethods
};

PyMODINIT_FUNC PyInit_cmath(void){
 return PyModule_Create(&cmath);
}
#else
// module initializer for python2
PyMODINIT_FUNC initcmath(void) {
	// PyImport_AddModule("factorial");
    (void) Py_InitModule("cmath", mainMethods);
}
#endif

编译(使用distutils):

from distutils.core import setup, Extension

    factorial_module = Extension('cmath', sources=['cmath.c'])
    setup(name='MathExtension',
          version='1.0',
          description='This is a math package',
          ext_modules=[factorial_module]
          )

性能对比

使用上面完整代码中的calculatearea做运算性能对比,在python中做同样实现:

import cmath
import timeit
import math


def do_calculation(r):
    r1 = math.cos(r)
    r2 = math.sin(r)
    r3 = math.log10(r)
    r4 = math.pi
    r5 = 666.666
    r = (((r1 + r2) - r3) * r4)/r5
    return math.pi * r * r


if __name__ == '__main__':
    print do_calculation(555.555)
    print cmath.do_calculation(555.555)

    # print sys.modules['__main__']
    #
    radius = 666.666
    num = 10000000
    t = timeit.Timer("cmath.do_calculation(%f)" % (radius), "import cmath")
    print "C function", t.timeit(num), "sec"

    t2 = timeit.Timer("sys.modules['__main__'].do_calculation(%f)" % (radius))
    print "Python function", t2.timeit(num), "sec"

执行10000000次对比耗时:

Python C扩展实践&性能对比_第1张图片

OK,C实现的方案相同运算速度远快于python实现,目的达到。

你可能感兴趣的:(python)