大作业

一、boston房价预测

import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

# 读取数据集
boston = load_boston()

print(boston.keys())
print(boston.target)# 房价数据
print(boston.feature_names) # 数据集特征

# 划分训练集与测试集
#随机擦痒25%的数据构建测试样本,剩余作为训练样本
X_train,X_test,y_train,y_test = train_test_split(boston.data,boston.target,test_size=0.3) #random_state:是随机数的种子
print(X_train.shape,y_train.shape)

# 建立模型
LineR = LinearRegression()
LineR.fit(X_train,y_train)

# 检查模型好坏
x_predict = LineR.predict(X_test)
print("各列权重",LineR.coef_)
print("测试集上的评分:",LineR.score(X_test, y_test))
print("训练集上的评分:",LineR.score(X_train, y_train))
print("预测的均方误差:", np.mean(x_predict - y_test)**2)
print("最小目标值:",np.min(boston.target))
print("平均目标值:",np.mean(boston.target))

# 画图
X = boston.data[:,12].reshape(-1,1)
y = boston.target

plt.scatter(X,y)

LineR2 = LinearRegression()
LineR2.fit(X,y)
y_predict = LineR2.predict(X)
plt.plot(X,y_predict,'r')
plt.show()

 大作业_第1张图片

from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt

# 读取数据集
boston = load_boston()

# 划分训练集与测试集
#随机擦痒25%的数据构建测试样本,剩余作为训练样本
x_train,x_test,y_train,y_test = train_test_split(boston.data,boston.target,test_size=0.3) #random_state:是随机数的种子

x = x_train[:,12].reshape(-1,1)
poly= PolynomialFeatures(degree=2)
x_poly = poly.fit_transform(x)

# 建立多项式回归模型
lrp = LinearRegression()
lrp.fit(x_poly,y_train)

lr = LinearRegression()
lr.fit(x,y_train)
w = lr.coef_
b = lr.intercept_

# 预测
x_poly2 = poly.transform(x_test[:, 12].reshape(-1,1))
y_ploy_predict = lrp.predict(x_poly2)

# 画图
plt.scatter(x_test[:,12], y_test)
plt.plot(x, w * x + b, 'g')
plt.scatter(x_test[:,12], y_ploy_predict, c='r')
plt.show()

 大作业_第2张图片

 

二、中文文本分类

#新闻文本分类
import os
import jieba
#读取文件内容

leirong=[]#存放新闻的内容
kinds=[]#存放新闻的类别
def read_txt(path):
    folder_list=os.listdir(path)#遍历data下的文件名
    for file in folder_list:
        new_path=os.path.join(path,file) #读取文件夹的名称,生成新的路径
        files=os.listdir(new_path)#存放文件的内容
        #遍历每个txt文件
        for f in files:
            with open(os.path.join(new_path,f),'r',encoding='UTF-8')as f: #打开txt文件
                word=f.read()
            leirong.append(processing(word))
            kinds.append(file)
#             print(content)
#             print(label)
            
#对数据进行预处理
with open(r'D:/stopsCN.txt', encoding='utf-8') as f:
    stopwords = f.read().split('\n')
def processing(texts):
    # 去掉非法的字符
    texts = "".join([char for char in texts if char.isalpha()])
    # 用jieba分词
    texts = [text for text in jieba.cut(texts,cut_all=True) if len(text) >=2]
    # 去掉停用词
    texts = " ".join([text for text in texts if text not in stopwords])
    return texts
if __name__== '__main__':
    path=r'D:\147'
    read_txt(path)

#划分训练集和测试,用TF-IDF算法进行单词权值的计算
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
tfidf= TfidfVectorizer()
x_train,x_test,y_train,y_test=train_test_split(leirong,kinds,test_size=0.2)
X_train=tfidf.fit_transform(x_train)#转换成特征向量
X_test=tfidf.transform(x_test)
#构建贝叶斯模型
from sklearn.naive_bayes import MultinomialNB #用于离散特征分类,文本分类单词统计,以出现的次数作为特征值
mulp=MultinomialNB ()
mulp_NB=mulp.fit(X_train,y_train)
#对模型进行预测
y_predict=mulp.predict(X_test)
# # 从sklearn.metrics里导入classification_report做分类的性能报告 
from sklearn.metrics import classification_report 
print('模型的准确率为:', mulp.score(X_test, y_test))
print('classification_report:\n',classification_report(y_test, y_predict))

 大作业_第3张图片

你可能感兴趣的:(大作业)