题:
命题 1 1 1: p ( n ∣ p(n | p(n∣偶数部分无重复 ) ) ) = = = p ( n ∣ p(n | p(n∣各部分无重复 3 3 3次以上 ) ) ) = = = p ( 4 ∤ k ) ( n ) p_{(4 \nmid k)}(n) p(4∤k)(n)
命题 2 2 2: p ( n ∣ p(n | p(n∣各部分无重复 d − 1 d-1 d−1次以上 ) ) ) = = = p ( d ∤ k ) ( n ) p_{(d \nmid k)}(n) p(d∤k)(n)
(摘自《初等数论及其应用第六版》7.4节拆分函数习题)
前言:这里使用母函数证明,需要格外注意母函数是无穷的,所以乘积可实现化简,
对于命题 1 1 1第一步先写出各个拆分函数的母函数,然后通过化简第二个到第一个,之后直接证明命题 2 2 2即可
证:
∵ \because ∵ 偶数部分无重复,因此对于任意 i i i,只能有一个 x 2 i x^{2i} x2i和无穷个的 x 2 i − 1 x^{2i-1} x2i−1
∴ p ( n ∣ \therefore p(n | ∴p(n∣偶数部分无重复 ) ) ) = = = ∏ i = 1 ∞ 1 + x 2 i 1 − x 2 i − 1 \prod_{i=1}^{\infty} \frac{1+x^{2i}}{1-x^{2i-1}} ∏i=1∞1−x2i−11+x2i
∵ p ( n ∣ \because p(n | ∵p(n∣各部分无重复 3 3 3次以上 ) = ∏ i = 1 ∞ ( 1 + x i + x 2 i + x 3 i ) ) = \prod_{i=1}^{\infty} (1+x^i+x^{2i}+x^{3i}) )=∏i=1∞(1+xi+x2i+x3i)
= ∏ i = 1 ∞ 1 − x 4 i 1 − x i = \prod_{i=1}^{\infty} \frac{1-x^{4i}}{1-x^i} =∏i=1∞1−xi1−x4i
= ∏ i = 1 ∞ ( 1 − x 4 i ) ( 1 + x i ) 1 − x 2 i = \prod_{i=1}^{\infty} \frac{(1-x^{4i})(1+x^i)}{1-x^{2i}} =∏i=1∞1−x2i(1−x4i)(1+xi) 即分子分母同乘 ( 1 + x i ) (1+x^i) (1+xi)
= ∏ i = 1 ∞ ( 1 + x 2 i ) ( 1 + x i ) = \prod_{i=1}^{\infty} (1+x^{2i})(1+x^i) =∏i=1∞(1+x2i)(1+xi) 因为 1 − x 4 i = ( 1 − x 2 i ) ( 1 + x 2 i ) 1-x^{4i} = (1-x^{2i})(1+x^{2i}) 1−x4i=(1−x2i)(1+x2i)
= ∏ i = 1 ∞ ( 1 + x 2 i ) ( 1 − x 2 i ) 1 − x i = \prod_{i=1}^{\infty} \frac{(1+x^{2i})(1-x^{2i})}{1-x^i} =∏i=1∞1−xi(1+x2i)(1−x2i) 因为 1 + x i = 1 − x 2 i 1 − x i 1+x^i = \frac{1-x^{2i}}{1-x^i} 1+xi=1−xi1−x2i
= ( 1 + x 2 ) ( 1 − x 2 ) 1 − x ∗ ( 1 + x 4 ) ( 1 − x 4 ) 1 − x 2 ∗ . . . = \frac{(1+x^2)(1-x^2)}{1-x}*\frac{(1+x^4)(1-x^4)}{1-x^2}* ... =1−x(1+x2)(1−x2)∗1−x2(1+x4)(1−x4)∗...
= ∏ i = 1 ∞ 1 + x 2 i 1 − x 2 i − 1 = \prod_{i=1}^{\infty} \frac{1+x^{2i}}{1-x^{2i-1}} =∏i=1∞1−x2i−11+x2i
∴ p ( n ∣ \therefore p(n | ∴p(n∣偶数部分无重复 ) = p ( n ∣ ) = p(n | )=p(n∣各部分无重复 3 3 3次以上 ) ) )
∵ p ( n ∣ \because p(n | ∵p(n∣各部分无重复 d − 1 d-1 d−1次以上 ) ) )
= ∏ i = 1 ∞ ∑ j = 0 d − 1 x j i = \prod_{i=1}^{\infty} \sum_{j=0}^{d-1}x^{ji} =∏i=1∞∑j=0d−1xji
= ∏ i = 1 ∞ 1 − x d i 1 − x i = \prod_{i=1}^{\infty} \frac{1-x^{di}}{1-x^i} =∏i=1∞1−xi1−xdi
= 1 − x d 1 − x ∗ 1 − x 2 d 1 − x 2 ∗ . . . = \frac{1-x^d}{1-x}*\frac{1-x^{2d}}{1-x^2}* ... =1−x1−xd∗1−x21−x2d∗...
= 1 1 − x ∗ 1 1 − x 2 ∗ . . . ∗ 1 1 − x d − 1 ∗ . . . = \frac{1}{1-x}*\frac{1}{1-x^2}*...*\frac{1}{1-x^{d-1}}*... =1−x1∗1−x21∗...∗1−xd−11∗... 即消去分子分母中 d d d的倍数项
= ∏ i = 1 ⋀ d ∤ i ∞ 1 1 − x i = \prod_{i=1 \bigwedge d \nmid i}^{\infty} \frac{1}{1-x^i} =∏i=1⋀d∤i∞1−xi1
= p ( d ∤ k ) ( n ) = p_{(d \nmid k)}(n) =p(d∤k)(n)
∴ p ( n ∣ \therefore p(n | ∴p(n∣各部分无重复 d − 1 d-1 d−1次以上 ) ) ) = = = p ( d ∤ k ) ( n ) p_{(d \nmid k)}(n) p(d∤k)(n)$
证毕。
后话:题目虽不难,但是母函数的思想却非常的奇妙,不得不佩服前人之伟岸