pytorch搭建简单网络

pytorch搭建一个简单神经网络

 1 import torch
 2 import torch.nn as nn
 3 
 4 # 定义数据
 5 # x:输入数据
 6 # y:标签
 7 x = torch.Tensor([[0.2, 0.4], [0.2, 0.3], [0.3, 0.4]])
 8 y = torch.Tensor([[0.6], [0.5], [0.7]])
 9 
10 
11 class MyNet(nn.Module):
12     def __init__(self):
13         # 调用基类构造函数
14         super(MyNet, self).__init__()
15         # 容器,使用时顺序调用各个层
16         self.fc = nn.Sequential(
17             # 定义三层
18             # 输入层
19             nn.Linear(2, 4),
20             # 激活函数
21             nn.Sigmoid(),
22             # 隐藏层
23             nn.Linear(4, 4),
24             nn.Sigmoid(),
25             # 输出层
26             nn.Linear(4, 1),
27         )
28         # 优化器
29         # params:优化对象
30         # lr:学习率
31         self.opt = torch.optim.Adam(params=self.parameters(), lr=0.001)
32         # 损失函数,均方差
33         self.mls = torch.nn.MSELoss()
34 
35     def forward(self, inputs):
36         # 前向传播
37         return self.fc(inputs)
38 
39     def train(self, x, y):
40         # 训练
41         # 得到输出结果
42         out = self.forward(x)
43         # 计算误差
44         loss = self.mls(out, y)
45         # print('loss', loss)
46         # 梯度置零
47         self.opt.zero_grad()
48         # 误差反向传播
49         loss.backward()
50         # 更新权重
51         self.opt.step()
52 
53     def test(self, x):
54         # 测试,就是前向传播的过程
55         return self.forward(x)
56 
57 
58 net = MyNet()
59 for i in range(10000):
60     net.train(x, y)
61 x = torch.Tensor([[0.4, 0.1]])
62 out = net.test(x)
63 print(out)  # 输出结果 tensor([[0.5205]], grad_fn=)

训练集较少,可能结果不是很好,主要是结构,毕竟刚开始接触这个pytorch

你可能感兴趣的:(pytorch搭建简单网络)