利用Zipkin追踪Mysql数据库调用链


概述

在前面:微服务调用链追踪中心搭建 一文中我们利用Zipkin搭建了一个微服务调用链的追踪中心,并且模拟了微服务调用的实验场景。利用Zipkin的库Brave,我们可以收集一个客户端请求从发出到被响应 经历了哪些组件哪些微服务请求总时长每个组件所花时长 等信息。

本文将讲述如何利用Zipkin对Mysql数据库的调用进行追踪,这里同样借助OpenZipkin库Brave来完成。

注: 本文首发于 My 公众号 CodeSheep ,可 长按扫描 下面的 小心心 来订阅 ↓ ↓ ↓


扩展ZipkinTool组件

ZipkinTool是在《微服务调用链追踪中心搭建》一文中编写的与Zipkin通信的工具组件,利用其追踪微服务调用链的,现在我们想追踪Mysql数据库调用链的话,可以扩展一下其功能。

  • pom.xml添加依赖:

        io.zipkin.brave
        brave-mysql
        4.0.6
  • 在ZipkinConfiguration类中添加MySQLStatementInterceptorManagementBean
    @Bean
    public MySQLStatementInterceptorManagementBean mySQLStatementInterceptorManagementBean() {
        return new MySQLStatementInterceptorManagementBean(brave().clientTracer());
    }

添加Mysql数据库访问的微服务

依然继承前文:《微服务调用链追踪中心搭建》,我们改造一下文中的ServiceC这个微服务,在其中添加与Mysql数据库的交互。

  • pom.xml中添加JDBC和Mysql依赖
        
            org.springframework.boot
            spring-boot-starter-jdbc
        
        
            mysql
            mysql-connector-java
            runtime
        
  • application.properties中添加Mysql连接的配置
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://你的Mysql服务所在IP:3307/test?useSSL=false\
  &statementInterceptors=com.github.kristofa.brave.mysql.MySQLStatementInterceptor\
  &zipkinServiceName=mysqlService
spring.datasource.username=root
spring.datasource.password=XXXXXX
  • Controller中添加JdbcTemplate访问数据库的代码
    @GetMapping("/mysqltest”)
    public String mysqlTest() {
        String name = jdbcTemplate.queryForObject( "SELECT name FROM user WHERE id = 1", String.class );
        return "Welcome " + name;
    }

启动Mysql数据库服务

1. 启动Mysql容器

docker run -d -p 3307:3306 \
-v ~/mysql/data:/var/lib/mysql \
-v ~/mysql/conf:/etc/mysql/conf.d \
-e MYSQL_ROOT_PASSWORD=XXXXXX \
--name mysql mysql

2. 再启动一个Mysql容器,接入其中做一些设置

  • 首先进入mysql命令行
docker run -it --rm \
--link mysql:mysql mysql \
mysql -hmysql -u root -p

  • 接下来创建数据库zipkin: 用于存放Zipkin所收集的数据
CREATE DATABASE `zipkin`

CREATE TABLE IF NOT EXISTS zipkin_spans (
  `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit’,
  `trace_id` BIGINT NOT NULL,
  `id` BIGINT NOT NULL,
  `name` VARCHAR(255) NOT NULL,
  `parent_id` BIGINT,
  `debug` BIT(1),
  `start_ts` BIGINT COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL’,
  `duration` BIGINT COMMENT 'Span.duration(): micros used for minDuration and maxDuration query’
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;

ALTER TABLE zipkin_spans ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `id`) COMMENT 'ignore insert on duplicate’;
ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`, `id`) COMMENT 'for joining with zipkin_annotations’;
ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTracesByIds’;
ALTER TABLE zipkin_spans ADD INDEX(`name`) COMMENT 'for getTraces and getSpanNames’;
ALTER TABLE zipkin_spans ADD INDEX(`start_ts`) COMMENT 'for getTraces ordering and range’;

CREATE TABLE IF NOT EXISTS zipkin_annotations (
  `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit’,
  `trace_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.trace_id’,
  `span_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.id’,
  `a_key` VARCHAR(255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1’,
  `a_value` BLOB COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB’,
  `a_type` INT NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation’,
  `a_timestamp` BIGINT COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp’,
  `endpoint_ipv4` INT COMMENT 'Null when Binary/Annotation.endpoint is null’,
  `endpoint_ipv6` BINARY(16) COMMENT 'Null when Binary/Annotation.endpoint is null, or no IPv6 address’,
  `endpoint_port` SMALLINT COMMENT 'Null when Binary/Annotation.endpoint is null’,
  `endpoint_service_name` VARCHAR(255) COMMENT 'Null when Binary/Annotation.endpoint is null’
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;

ALTER TABLE zipkin_annotations ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `span_id`, `a_key`, `a_timestamp`) COMMENT 'Ignore insert on duplicate’;
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`, `span_id`) COMMENT 'for joining with zipkin_spans’;
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTraces/ByIds’;
ALTER TABLE zipkin_annotations ADD INDEX(`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames’;
ALTER TABLE zipkin_annotations ADD INDEX(`a_type`) COMMENT 'for getTraces’;
ALTER TABLE zipkin_annotations ADD INDEX(`a_key`) COMMENT 'for getTraces’;
ALTER TABLE zipkin_annotations ADD INDEX(`trace_id`, `span_id`, `a_key`) COMMENT 'for dependencies job’;

CREATE TABLE IF NOT EXISTS zipkin_dependencies (
  `day` DATE NOT NULL,
  `parent` VARCHAR(255) NOT NULL,
  `child` VARCHAR(255) NOT NULL,
  `call_count` BIGINT,
  `error_count` BIGINT
) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;

ALTER TABLE zipkin_dependencies ADD UNIQUE KEY(`day`, `parent`, `child`);

这里创建了三个数据表。

该Sql文件可以从以下链接获得: https://github.com/openzipkin...

Sql脚本执行完成后,可以看到zipkin相关的三个表已经建成:

  • 创建数据库test:用作测试数据库
CREATE DATABASE `test`
CREATE TABLE `user` (
  `id` int(11) unsigned NOT NULL auto_increment,
  `name` varchar(100) DEFAULT NULL ,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET = utf8;

insert into user values (1,”hansonwang99”)

这里插入了一条数据用于实验。


启动zipkin服务

docker run -d -p 9411:9411 \
--link mysql:mysql \
-e STORAGE_TYPE=mysql \
-e MYSQL_HOST=mysql \
-e MYSQL_TCP_PORT=3306 \
-e MYSQL_DB=zipkin \
-e MYSQL_USER=root \
-e MYSQL_PASS=XXXXXX \
 --name zipkin openzipkin/zipkin

启动Mysql数据库访问的微服务(即ServiceC)

在浏览器中输入:localhost:8883/mysqltest,如果看到以下输出,就可以证明数据库调用操作已经成功了!


Zipkin追踪数据库调用实际实验

  • 浏览器输入:http://localhost:9411/zipkin/

打开Zipkin Web UI,点击服务名下拉列表能看见已经成功识别了Mysql数据库调用服务

  • 选中mysqlservice后,点击Find Traces

可以看到 首次查询 Mysql的调用链追踪信息,有很多

随便点开某一个查看:

  • 接下来浏览器中再次输入:localhost:8883/mysqltest

目的是再次触发Mysql的调用,然后再次Find Traces,可以看到追踪数据类似下图:包含两次Mysql的query动作:

点开第一个query查看,其实际上是在 尝试连接Mysql数据库

点开第二个query查看,发现这里才是 实际查询业务

从图形化界面上可以清楚地知道每个阶段的详细步骤与耗时,因此可以用来分析哪个SQL语句执行相对较慢。


后记

本文实验所用源码已经开源,需要的话请 自取。

  • 作者更多的原创文章在此,欢迎观赏
  • My Personal Blog

作者更多的SpringBt实践文章在此:

  • Spring Boot应用监控实战
  • SpringBoot应用部署于外置Tomcat容器
  • ElasticSearch搜索引擎在SpringBt中的实践
  • 初探Kotlin+SpringBoot联合编程
  • Spring Boot日志框架实践
  • SpringBoot优雅编码之:Lombok加持

如果有兴趣,也可以抽点时间看看作者一些关于容器化、微服务化方面的文章:

  • 利用K8S技术栈打造个人私有云 连载文章
  • 从一份配置清单详解Nginx服务器配置
  • Docker容器可视化监控中心搭建
  • 利用ELK搭建Docker容器化应用日志中心
  • RPC框架实践之:Apache Thrift
  • RPC框架实践之:Google gRPC
  • 微服务调用链追踪中心搭建
  • Docker容器跨主机通信
  • Docker Swarm集群初探
  • 高效编写Dockerfile的几条准则


你可能感兴趣的:(zipkin,mysql,docker,微服务)