# 人工智能实战2019BUAA_第二次作业_刘星航_(补)
0. 导航
这个作业属于哪个课程 |
人工智能实战2019 |
这个作业的要求在哪里 |
这里 |
我在这个课程的目标是 |
理解并能应用一些常用的人工智能相关知识 |
这个作业在哪个具体方面帮助我实现目标 |
熟悉双变量传播过程 |
2. Python实现双变量反向传播计算
from numpy import *
target = 150.0
w = 3.0
b = 4.0
z = 162
min = 1e-5;
print(z)
iter_count = 0
while ((abs(150 - z)) > min):
iter_count +=1
x = 2 * w + 3 * b
y = 2 * b + 1
z = x * y
delta_b = ((z - 150) / ((2 * x + 3 * y)*2))
delta_w = ((z - 150) / ((2 * y)*2))
w = w - delta_w
b = b - delta_b
print("loop: %d, w = %.8f, b = %.8f, z = %.8f, error = %.8f"%(iter_count,w,b,z,abs(150-z)));
print("final result:loop = %d, w = %.8f, b = %.8f,z = %.8f,error = %.8f"%(iter_count,w,b,z,abs(z-150)));
- 不更新权重
此时只需要进行对 $\Delta b, \Delta w$的值进行修改即可
代码改为:
from numpy import *
target = 150.0
w = 3.0
b = 4.0
z = 162
min = 1e-5;
print(z)
iter_count = 0
while ((abs(150 - z)) > min):
iter_count +=1
x = 2 * w + 3 * b
y = 2 * b + 1
z = x * y
delta_b = ((z - 150) / ((63)*2))
delta_w = ((z - 150) / ((18)*2))
w = w - delta_w
b = b - delta_b
print("loop: %d, w = %.8f, b = %.8f, z = %.8f, error = %.8f"%(iter_count,w,b,z,abs(150-z)));
print("final result:loop = %d, w = %.8f, b = %.8f,z = %.8f,error = %.8f"%(iter_count,w,b,z,abs(z-150)));
3. 运行结果
权重更新的反向传播计算过程:
z= 150.181405895692 w= 2.66666666666667 b= 3.90476190476190 deltz= 0.181405895691626 times= 1
z= 150.000044335267 w= 2.66151866151866 b= 3.90326327226406 deltz= 4.43352674039943e-5 times= 2
z= 150.000000000003 w= 2.66151740292746 b= 3.90326290576744 deltz= 2.67164068645798e-12 times= 3
Time used: 0.0634633
无权重更新的反向传播计算过程:
z= 150.181405895692 w= 2.66666666666667 b= 3.90476190476190 deltz= 0.181405895691626 times= 1
z= 150.005526139576 w= 2.66162761400857 b= 3.90332217543102 deltz= 0.00552613957617609 times= 2
z= 150.000169643281 w= 2.66147411013145 b= 3.90327831718041 deltz= 0.000169643281225262 times= 3
z= 150.000005208983 w= 2.66146939781808 b= 3.90327697080517 deltz= 5.20898345257592e-6 times= 4
Time used: 0.02040919999999999