KNN算法实战——手写数字识别

KNN算法简介

KNN算法的简介可参考:K-近邻算法(KNN)

手写数字识别

kNN算法主要被应用于文本分类、相似推荐,本文将描述一个分类的例子。
何为手写识别?可参考维基百科介绍:手写识别

  • 数据下载:手写识别数据
  • 数据说明:每个手写数字已经事先处理成32*32的二进制文本,存储格式为txt文件。分为训练样本和测试样本:“trainingDigits”、“testDigits”。
  • 编程实现步骤:
    • 将每个图片(即txt文本,以下提到图片都指txt文本)转化为一个向量,即32*32的数组转化为1*1024的数组,这个1*1024的数组用机器学习的术语来说就是特征向量;
    • 训练样本中有10*10个图片,可以合并成一个100*1024的矩阵,每一行对应一个图片;
    • 测试样本中有10*5个图片,我们要让程序自动判断每个图片所表示的数字。同样的,对于测试图片,将其转化为1*1024的向量,然后计算它与训练样本中各个图片的“距离”(这里两个向量的距离采用欧式距离),然后对距离排序,选出较小的前k个,因为这k个样本来自训练集,是已知其代表的数字的,所以被测试图片所代表的数字就可以确定为这k个中出现次数最多的那个数字。
  • 代码如下:
from numpy import *
import operator
from os import listdir

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]                  
    diffMat = tile(inX, (dataSetSize,1)) - dataSet      
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)                  
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()            
    classCount={}                                      
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')          
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]                  
        fileStr = fileNameStr.split('.')[0]                
        classNumStr = int(fileStr.split('_')[0])          
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    testFileList = listdir('testDigits')       
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]     
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if (classifierResult != classNumStr): errorCount += 1.0  
    print "\nthe total number of errors is: %d" % errorCount  
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))

handwritingClassTest()

输出结果:

the classifier came back with: 4, the real answer is: 4
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 5, the real answer is: 5
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 6, the real answer is: 6
the classifier came back with: 9, the real answer is: 9
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 9, the real answer is: 9
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 4, the real answer is: 4
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 9, the real answer is: 9
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 6, the real answer is: 6
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 9, the real answer is: 9
the classifier came back with: 6, the real answer is: 6
the classifier came back with: 8, the real answer is: 8
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 4, the real answer is: 4
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 4, the real answer is: 4
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 4, the real answer is: 4
the classifier came back with: 5, the real answer is: 5
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 6, the real answer is: 6
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 0, the real answer is: 0
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 7, the real answer is: 7
the classifier came back with: 9, the real answer is: 9
the classifier came back with: 5, the real answer is: 5
the classifier came back with: 5, the real answer is: 5
the classifier came back with: 6, the real answer is: 6
the classifier came back with: 5, the real answer is: 5

the total number of errors is: 0

the total error rate is: 0.000000

因为用的训练集和测试集都比较小,所以凑巧没有识别错误的情况。

你可能感兴趣的:(Machine,Learning)