java-数据结构-赫夫曼树(Huffman Tree)

java-数据结构-赫夫曼树(Huffman Tree)

在计算机数据处理中,哈夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。
例如,在英文中,e的出现机率最高,而z的出现概率则最低。当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用一个比特来表示,而z则可能花去25个比特(不是26)。用普通的表示方法时,每个英文字母均占用一个字节,即8个比特。二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。
哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数)。树的路径长度是从树根到每一结点的路径长度之和,记为WPL=(W1*L1+W2*L2+W3*L3+...+Wn*Ln),N个权值Wi(i=1,2,...n)构成一棵有N个叶结点的二叉树,相应的叶结点的路径长度为Li(i=1,2,…n)。可以证明哈夫曼树的WPL是最小的。

package com.huffmantree;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {

	public static void main(String[] args) {
		int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
		Node root = createHuffmanTree(arr);
		
		//测试一把
		preOrder(root); //
		
	}
	
	//编写一个前序遍历的方法
	public static void preOrder(Node root) {
		if(root != null) {
			root.preOrder();
		}else{
			System.out.println("是空树,不能遍历~~");
		}
	}

	// 创建赫夫曼树的方法
	/**
	 * 
	 * @param arr 需要创建成哈夫曼树的数组
	 * @return 创建好后的赫夫曼树的root结点
	 */
	public static Node createHuffmanTree(int[] arr) {
		// 第一步为了操作方便
		// 1. 遍历 arr 数组
		// 2. 将arr的每个元素构成成一个Node
		// 3. 将Node 放入到ArrayList中
		List<Node> nodes = new ArrayList<Node>();
		for (int value : arr) {
			nodes.add(new Node(value));
		}
		
		//我们处理的过程是一个循环的过程
		
		
		while(nodes.size() > 1) {
		
			//排序 从小到大 
			Collections.sort(nodes);
			
			System.out.println("nodes =" + nodes);
			
			//取出根节点权值最小的两颗二叉树 
			//(1) 取出权值最小的结点(二叉树)
			Node leftNode = nodes.get(0);
			//(2) 取出权值第二小的结点(二叉树)
			Node rightNode = nodes.get(1);
			
			//(3)构建一颗新的二叉树
			Node parent = new Node(leftNode.value + rightNode.value);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//(4)从ArrayList删除处理过的二叉树
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//(5)将parent加入到nodes
			nodes.add(parent);
		}
		
		//返回哈夫曼树的root结点
		return nodes.get(0);
		
	}
}

// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
	int value; // 结点权值
	char c; //字符
	Node left; // 指向左子结点
	Node right; // 指向右子结点

	//写一个前序遍历
	public void preOrder() {
		System.out.println(this);
		if(this.left != null) {
			this.left.preOrder();
		}
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	
	public Node(int value) {
		this.value = value;
	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	@Override
	public int compareTo(Node o) {
		// 表示从小到大排序
		return this.value - o.value;
	}

}

你可能感兴趣的:(转载,java,零基础学数据结构)