redis-benchmark压力测试

redis-benchmark压力测试

redis-benchmark是redis官方提供的压测工具,安装好redis后,默认安装。使用简便。

语法:

Usage: redis-benchmark [-h ] [-p ] [-c ] [-n [-k ]

模拟20个客户端,100000次请求

redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20

模拟1000000次请求,生成100000000个set结构

redis-benchmark -t set -n 1000000 -r 100000000

模拟ping,set,get 各100000次,结果输出到csv文件

redis-benchmark -t ping,set,get -n 100000 --csv

模拟100000次键foo的存储性能

redis-benchmark -n 100000 -q script load "redis.call('set','foo','bar')"

模拟一下十万次请求:
redis-benchmark -n 100000 -q

模拟一下百万级访问近百万key:
[root@vm-ArthurGuo-1 ~]# redis-benchmark -n 1000000 -r1000000 -q

模拟一个万级用户的并发:
 redis-benchmark -c 10000 -n 1000000 -r 1000000 -q


redis-benchmark --help

Usage: redis-benchmark [-h ] [-p ] [-c ] [-n [-k ]

 -h      Server hostname (default 127.0.0.1)  --主机ip地址
 -p          Server port (default 6379) --端口
 -s        Server socket (overrides host and port) --socket(如果测试在服务器上测可以用socket方式)
 -c       Number of parallel connections (default 50) --客户端连接数
 -n      Total number of requests (default 10000) --总请求数
 -d          Data size of SET/GET value in bytes (default 2) --set、get的value大小
 -dbnum        SELECT the specified db number (default 0) --选择哪个数据库测试(一般0-15)
 -k       1=keep alive 0=reconnect (default 1) --是否采用keep alive模式
 -r   Use random keys for SET/GET/INCR, random values for SADD --随机产生键值时的随机数范围
  Using this option the benchmark will expand the string __rand_int__
  inside an argument with a 12 digits number in the specified range
  from 0 to keyspacelen-1. The substitution changes every time a command
  is executed. Default tests use this to hit random keys in the
  specified range.
 -P        Pipeline requests. Default 1 (no pipeline). --pipeline的个数(如果使用pipeline会把多个命令封装在一起提高效率)
 -q                 Quiet. Just show query/sec values --仅仅查看每秒的查询数
 --csv              Output in CSV format --用csv方式输出
 -l                 Loop. Run the tests forever --循环次数
 -t         Only run the comma separated list of tests. The test --指定命令
                    names are the same as the ones produced as output.
 -I                 Idle mode. Just open N idle connections and wait. --仅打开n个空闲链接

Examples:

 Run the benchmark with the default configuration against 127.0.0.1:6379:
   $ redis-benchmark

 Use 20 parallel clients, for a total of 100k requests, against 192.168.1.1:
   $ redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20  --测试set、get、mset、sadd等场景下的性能

 Fill 127.0.0.1:6379 with about 1 million keys only using the SET test:
   $ redis-benchmark -t set -n 1000000 -r 100000000  --测试set随机数的性能

 Benchmark 127.0.0.1:6379 for a few commands producing CSV output:
   $ redis-benchmark -t ping,set,get -n 100000 --csv  --使用csv的输出方式测试

 Benchmark a specific command line:
   $ redis-benchmark -r 10000 -n 10000 eval 'return redis.call("ping")' 0 --测试基本命令的速度

 Fill a list with 10000 random elements:
   $ redis-benchmark -r 10000 -n 10000 lpush mylist __rand_int__  --测试list入队的速度

 On user specified command lines __rand_int__ is replaced with a random integer
 with a range of values selected by the -r option.

下面我就测下我的笔记本电脑的redis性能:
[root@db1 ~]# redis-benchmark -h 127.0.0.1 -p 6379 -n 100000 -c 20
====== PING_INLINE ======
  100000 requests completed in 1.09 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.86% <= 1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 2 milliseconds
91659.03 requests per second

====== PING_BULK ======
  100000 requests completed in 1.07 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.94% <= 1 milliseconds
100.00% <= 1 milliseconds
93545.37 requests per second

====== SET ======
  100000 requests completed in 1.03 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.78% <= 1 milliseconds
100.00% <= 1 milliseconds
97087.38 requests per second

====== GET ======
  100000 requests completed in 1.10 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.81% <= 1 milliseconds
100.00% <= 1 milliseconds
90909.09 requests per second

====== INCR ======
  100000 requests completed in 1.09 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.86% <= 1 milliseconds
100.00% <= 1 milliseconds
91911.76 requests per second

====== LPUSH ======
  100000 requests completed in 1.07 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.85% <= 1 milliseconds
100.00% <= 1 milliseconds
93808.63 requests per second

====== LPOP ======
  100000 requests completed in 1.01 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.89% <= 1 milliseconds
100.00% <= 1 milliseconds
98522.17 requests per second

====== SADD ======
  100000 requests completed in 1.04 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.76% <= 1 milliseconds
100.00% <= 1 milliseconds
96153.85 requests per second

====== SPOP ======
  100000 requests completed in 1.11 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.92% <= 1 milliseconds
100.00% <= 1 milliseconds
90171.33 requests per second

====== LPUSH (needed to benchmark LRANGE) ======
  100000 requests completed in 1.09 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.82% <= 1 milliseconds
100.00% <= 1 milliseconds
92081.03 requests per second

====== LRANGE_100 (first 100 elements) ======
  100000 requests completed in 2.53 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.91% <= 1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 2 milliseconds
39603.96 requests per second

====== LRANGE_300 (first 300 elements) ======
  100000 requests completed in 5.17 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

91.01% <= 1 milliseconds
99.94% <= 2 milliseconds
100.00% <= 2 milliseconds
19346.10 requests per second

====== LRANGE_500 (first 450 elements) ======
  100000 requests completed in 7.41 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

61.54% <= 1 milliseconds
98.36% <= 2 milliseconds
99.96% <= 3 milliseconds
100.00% <= 4 milliseconds
100.00% <= 4 milliseconds
13498.92 requests per second

====== LRANGE_600 (first 600 elements) ======
  100000 requests completed in 9.49 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

41.24% <= 1 milliseconds
91.89% <= 2 milliseconds
99.78% <= 3 milliseconds
100.00% <= 4 milliseconds
100.00% <= 4 milliseconds
10541.85 requests per second

====== MSET (10 keys) ======
  100000 requests completed in 1.68 seconds
  20 parallel clients
  3 bytes payload
  keep alive: 1

99.28% <= 1 milliseconds
100.00% <= 1 milliseconds
59382.42 requests per second
从以上可以看出,20个客户端,每种场景均有100000次请求:ping、set、get、lpush、lpop、spop等都达到90000多rps,但lrange前100、300、500等就比较慢了,才10000多rps。

再测下set的速度:
[root@db1 ~]# redis-benchmark -t set -n 1000000 -r 100000000
====== SET ======
  1000000 requests completed in 10.56 seconds
  50 parallel clients
  3 bytes payload
  keep alive: 1

98.65% <= 1 milliseconds
99.90% <= 2 milliseconds
99.99% <= 3 milliseconds
100.00% <= 3 milliseconds
94741.83 requests per second
每秒94741次,非常快

再来测试下list的入队速度:
[root@db1 ~]# redis-benchmark -r 100000 -n 100000 lpush mylist __rand_int__
====== lpush mylist __rand_int__ ======
  100000 requests completed in 0.97 seconds
  50 parallel clients
  3 bytes payload
  keep alive: 1

98.83% <= 1 milliseconds
100.00% <= 1 milliseconds
102774.92 requests per second
超过了10w次。


你可能感兴趣的:(redis)