转载自 Machine Learning Courses
Tips : 网上有很多好的资源, 例如转载的这篇Blog中列举的这些, 但是真正掌握知识都是一样的, 选择合适自己的一门课上懂就可以.
Courses on machine learning
http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/MLPAGES/mlcourses.htm
CSC2535 – Spring 2013 Advanced Machine Learning
instructor: by Hinton, University of Toronto
homepage: http://www.cs.toronto.edu/~hinton/csc2535/
Stanford CME 323: Distributed Algorithms and Optimization
http://stanford.edu/~rezab/dao/
University at Buffalo CSE574: Machine Learning and Probabilistic Graphical Models Course
http://www.cedar.buffalo.edu/~srihari/CSE574/
Stanford CS229: Machine Learning Autumn 2015
instructor: Andrew Ng
homepage: http://cs229.stanford.edu/
project page: http://cs229.stanford.edu/projects2015.html
Stanford / Winter 2014-2015 CS229T/STATS231: Statistical Learning Theory
instructor: Percy Liang
homepage: http://web.stanford.edu/class/cs229t/
lecture notes: http://web.stanford.edu/class/cs229t/notes.pdf
CMU Fall 2015 10-715: Advanced Introduction to Machine Learning
instructor: Alex Smola, Barnabas Poczos
homepage: http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/
video: http://pan.baidu.com/s/1qWvcsUS
2015 Machine Learning Summer School: Convex Optimization Short Course
instructor: S. Boyd and S. Diamond
Lecture slides and IPython notebooks: https://stanford.edu/~boyd/papers/cvx_short_course.html
STA 4273H (Winter 2015): Large Scale Machine Learning
http://www.cs.toronto.edu/~rsalakhu/STA4273_2015/
University of Oxford: Machine Learning: 2014-2015
homepage: https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
course materials: https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
lectures: http://pan.baidu.com/s/1bndbxJh#path=%252FDeep%2520Learning%2520Lectures
github: https://github.com/oxford-cs-ml-2015/
Computer Science 294: Practical Machine Learning (Fall 2009)
instructor: Michael Jordan
homepage: https://www.cs.berkeley.edu/~jordan/courses/294-fall09/
Statistics, Probability and Machine Learning Short Course
homepage: http://www-staff.it.uts.edu.au/~ydxu/statistics.htm
youku: http://i.youku.com/u/UMzIzNDgxNTg5Ng
youbube: https://www.youtube.com/playlist?list=PLFze15KrfxbF0n1zTNoFIaDpxnSyfgNgc
Statistical Learning
https://lagunita.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about
Machine learning courses online
http://fastml.com/machine-learning-courses-online/
Build Intelligent Applications: Master machine learning fundamentals in five hands-on courses (Coursera)
https://www.coursera.org/specializations/machine-learning
Machine Learning
http://www.cs.ubc.ca/~nando/540-2013/lectures.html
Princeton Computer Science 598D: Overcoming Intractability in Machine Learning
http://www.cs.princeton.edu/courses/archive/spring15/cos598D/
Princeton Computer Science 511: Theoretical Machine Learning
instructor: Rob Schapire
homepage: http://www.cs.princeton.edu/courses/archive/spring14/cos511/schedule.html
MACHINE LEARNING FOR MUSICIANS AND ARTISTS
https://www.kadenze.com/courses/machine-learning-for-musicians-and-artists/info
CMSC 726: Machine Learning
homepage: http://www.cbcb.umd.edu/~hcorrada/PML/index.html
MIT: 9.520: Statistical Learning Theory and Applications, Fall 2015
http://www.mit.edu/~9.520/fall15/
CMU: Machine Learning: 10-701/15-781, Spring 2011
instructor: Tom Mitchell
homepage: http://www.cs.cmu.edu/~tom/10701_sp11/
lectures: http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml
NLA 2015 course material
ipn: http://nbviewer.jupyter.org/github/Bihaqo/nla2015/blob/master/table_of_contents.ipynb
CS 189/289A: Introduction to Machine Learning(with videos)
homepage: http://www.cs.berkeley.edu/~jrs/189/
An Introduction to Statistical Machine Learning Spring 2014 (for ACM Class)
http://bcmi.sjtu.edu.cn/log/courses/ml_2014_spring_acm.html
CS 159: Advanced Topics in Machine Learning (Spring 2016)
intro: Online Learning, Multi-Armed Bandits, Active Learning, Human-in-the-Loop Learning, Reinforcement Learning
instructor: Yisong Yue
homepage: http://www.yisongyue.com/courses/cs159/
Advanced Statistical Computing (Vanderbilt University)
intro: Course covers numerical optimization, Markov Chain Monte Carlo (MCMC), Metropolis-Hastings, Gibbs sampling, estimation-maximization (EM) algorithms, data augmentation algorithms with applications for model fitting and techniques for dealing with missing data
homepage: http://stronginference.com/Bios8366/
lecture: http://stronginference.com/Bios8366/lectures.html
github: https://github.com/fonnesbeck/Bios8366
Stanford CS229: Machine Learning Spring 2016
instructor: John Duchi
homepage: http://cs229.stanford.edu/
materials: http://cs229.stanford.edu/materials.html
Machine Learning: 2015-2016
homepage: https://www.cs.ox.ac.uk/teaching/courses/2015-2016/ml/
materials: http://www.cs.ox.ac.uk/people/varun.kanade/teaching/ML-HT2016/index.html
CS273a: Introduction to Machine Learning
homepage: http://sli.ics.uci.edu/Classes/2015W-273a
youtube: https://www.youtube.com/playlist?list=PLaXDtXvwY-oDvedS3f4HW0b4KxqpJ_imw
course notes: http://sli.ics.uci.edu/Classes-CS178-Notes/Classes-CS178-Notes
Machine Learning CS-433
homepage: http://mlo.epfl.ch/page-136795.html
github: https://github.com/epfml/ML_course
Phd-level courses
reddit: https://www.reddit.com/r/MachineLearning/comments/51qhc8/phdlevel_courses/
Advanced Introduction to Machine Learning
homepage: http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/index.html
video: https://www.youtube.com/playlist?list=PL4DwY1suLMkcu-wytRDbvBNmx57CdQ2pJ&jct=q4qVgISGxJql7TlE6eSLKa8Wwci8SA
STA 4273H (Winter 2015): Large Scale Machine Learning
http://www.cs.toronto.edu/~rsalakhu/STA4273_2015/
Statistical Learning Theory and Applications (MIT)
homepage: http://www.mit.edu/~9.520/fall15/index.html
video: https://www.youtube.com/playlist?list=PLyGKBDfnk-iDj3FBd0Avr_dLbrU8VG73O
(REGML 2016) Regularization Methods for Machine Learning
homepage: http://lcsl.mit.edu/courses/regml/regml2016/
video: https://www.youtube.com/playlist?list=PLbF0BXX_6CPJ20Gf_KbLFnPWjFTvvRwCO
Convex Optimization: Spring 2015
homepage: http://www.stat.cmu.edu/~ryantibs/convexopt-S15/
video: https://www.youtube.com/playlist?list=PLjbUi5mgii6BZBhJ9nW7eydgycyCOYeZ6
CMU: Probabilistic Graphical Models (10-708, Spring 2014)
instructor: Eric Xing
homepage: http://www.cs.cmu.edu/~epxing/Class/10708/
lecture: http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html
Advanced Optimization and Randomized Methods
instructor: A. Smola, S. Sra
homepage: http://www.cs.cmu.edu/~suvrit/teach/index.html
Machine Learning for Robotics and Computer Vision
homepage: http://vision.in.tum.de/teaching/ws2013/ml_ws13
video: https://www.youtube.com/watch?v=QZmZFeZxEKI&list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl
Statistical Machine Learning
homepage: http://www.stat.cmu.edu/~larry/=sml/
video: https://www.youtube.com/playlist?list=PLTB9VQq8WiaCBK2XrtYn5t9uuPdsNm7YE
mirror: http://pan.baidu.com/s/1eSuJ1Nc
Learn Machine learning online – List of machine learning courses available online
blog: http://bafflednerd.com/learn-machine-learning-online/
awesomeMLmath
intro: Curated list to learn the math basics for machine learning. Note that this is a biased list from a Deep Learning research.
github: https://github.com/EderSantana/awesomeMLmath
MOOCs for Machine Learning
https://medium.com/@amarbudhiraja/moocs-for-machine-learning-5a2f2c6cdcfe#.1m2v38e0y