斯坦福博弈论笔记整理活动的任务已重新划分,望周知

参与方式:https://github.com/apachecn/stanford-game-theory-notes-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/stanford-game-theory-notes-zh/issues/1

项目仓库:https://github.com/apachecn/stanford-game-theory-notes-zh


贡献指南

请您勇敢地去翻译和改进翻译。虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错——在大部分情况下,我们的服务器已经记录所有的翻译,因此您不必担心会因为您的失误遭到无法挽回的破坏。(改编自维基百科)

课程视频:

  • 斯坦福博弈论课程官网
  • Cousera 博弈论 1
  • Cousera 博弈论 2

负责人:

  • viviwong

章节列表

  • 博弈论 I
    • 1-1 Game Theory Intro - TCP Backoff
    • 1-2 Self-Interested Agents and Utility Theory
    • 1-3 Defining Games
    • 1-4 Examples of Games
    • 1-5 Nash Equilibrium Intro
    • 1-6 Strategic Reasoning
    • 1-7 Best Response and Nash Equilibrium
    • 1-8 Nash Equilibrium of Example Games
    • 1-9 Dominant Strategies
    • 1-10 Pareto Optimality
    • 2-1 Mixed Strategies and Nash Equilibrium (I)
    • 2-2 Mixed Strategies and Nash Equilibrium (II)
    • 2-3 Computing Mixed Nash Equilibrium
    • 2-4 Hardness Beyond 2x2 Games - Basic
    • 2-4 Hardness Beyond 2x2 Games - Advanced
    • 2-5 Example: Mixed Strategy Nash
    • 2-6 Data: Professional Sports and Mixed Strategies
    • 3-1 Beyond the Nash Equilibrium
    • 3-2 Strictly Dominated Strategies & Iterative Removal
    • 3-3 Dominated Strategies & Iterative Removal: An Application
    • 3-4 Maxmin Strategies
    • 3-4 Maxmin Strategies - Advanced
    • 3-5 Correlated Equilibrium: Intuition
    • 4-1 Perfect Information Extensive Form: Taste
    • 4-2 Formalizing Perfect Information Extensive Form Games
    • 4-3 Perfect Information Extensive Form: Strategies, BR, NE
    • 4-4 Subgame Perfection
    • 4-5 Backward Induction
    • 4-6 Subgame Perfect Application: Ultimatum Bargaining
    • 4-7 Imperfect Information Extensive Form: Poker
    • 4-8 Imperfect Information Extensive Form: Definition, Strategies
    • 4-9 Mixed and Behavioral Strategies
    • 4-10 Incomplete Information in the Extensive Form: Beyond Subgame Perfection
  • 博弈论 II
    • 1.1 Social Choice: Taste
    • 1.2 Social Choice: Voting Scheme
    • 1.3 Paradoxical Outcomes
    • 1.4 Impossibility of Non-Paradoxical Social Welfare Functions
    • 1.5 Arrow's Theorem
    • 1.6 Impossibility of Non-Pardoxical Social Choice Functions
    • 1.7 Single-Peaked Preferences
    • 2.1 Mechanism Design: Taste
    • 2.2 Implementation
    • 2.3 Mechanism Design: Examples
    • 2.4 Revelation Principle
    • 2.5 Revelation Principle: Examples
    • 2.6 Impossibility of General Dominant-Strategy Implementation
    • 2.7 Transferable Utility
    • 2.8 Transferable Utility Example
    • 2.9 Mechanism Design as an Optimization Problem
    • 3.1 VCG: Taste
    • 3.2 VCG: Definitions
    • 3.3 VCG: Examples
    • 3.4 VCG: Limitations
    • 3.5 VCG: Individual Rationality and Budget Balance in VCG
    • 3.6 VCG: The Myerson-Satterthwaite Theorem
    • 4.1 Auctions: Taste
    • 4.2 Auctions: Taxonomy
    • 4.3 Bidding in Second-Price Auctions
    • 4.4 Bidding in First-Price Auctions
    • 4.5 Revenue Equivalence
    • 4.6 Optimal Auctions
    • 4.7 More Advanced Auctions

流程

一、认领

首先查看整体进度,确认没有人认领了你想认领的章节。

然后回复 ISSUE,注明“章节 + QQ 号”。

二、整理笔记

  • 翻译 Coursera 课程页面的字幕(可以利用谷歌翻译,但一定要把它变得可读)
  • 排版成段落,并添加视频截图

三、提交

  • fork Github 项目
  • 将文档(Markdown 格式)放在docs中。
  • push
  • pull request

请见 Github 入门指南。

你可能感兴趣的:(斯坦福博弈论笔记整理活动的任务已重新划分,望周知)