问题51: Find the smallest prime which, by changing the same part of the number, can form eight different primes.
题目简介:对于数字56**3(其中*表示占位符),将其中的两个*换成0~9中的数字,产生的10个数字中为素数的有:56003, 56113, 56333, 56443, 56663, 56773, 56993。 56003是这一系列素数中最小的那个。
现在要求满足下列条件最小的那个素数:该数是由将某个数中的几位(不一定相邻)替换为相同数字而产生的8个素数中的一个。( 注意:如果被替换的位置中有首位,则不能用0来替换)
答 案:121313
import java.util.Arrays.fill import eastsun.math.Util._ object Euler051 extends Application { var pa = getPrimes(1000000).filter{ _ > 100000 } var bf = new Array[Int](64) var res = 0 var i = 0 while(res == 0 && i < pa.length){ fill(bf,1) var j = i + 1 while(res == 0 && j < pa.length){ var pi = pa(i) var pj = pa(j) var id = 0 var tg = true var pie = -1 var pje = -1 do{ id = id<<1 if(pi%10 == pj%10) id = id|1 else if(pie != -1 && (pj%10 != pje || pi%10 != pie)) tg =false else{ pje = pj%10 pie = pi%10 } pi = pi/10 pj = pj/10 }while(pi != 0 && tg ) if(tg){ bf(id) += 1 if(bf(id) >= 8 ) res = pa(i) } j += 1 } i += 1 } println(res) }
问题52: Find the smallest positive integer, x, such that 2x, 3x, 4x, 5x, and 6x, contain the same digits in some order.
题目简介:求最小的x,使得x的2倍,3倍,4倍,5倍,6倍都是由相同的数字组成
答 案:142857
PS:对1/7的循环节印象比较深刻,直接就写出来了,果然是对的:-)
问题53: How many values of C(n,r), for 1 ≤ n ≤ 100, exceed one-million?
题目简介:求组合数C(n,r) (1 ≤ n ≤ 100)中超过1000000的有多少个。
答 案:4075
object Euler053 extends Application { var buf =new Array[BigInt](101) var res =0 for(row <- 0 to 100){ var pre =buf(0) for(col <- 1 to row-1){ var tmp =pre pre =buf(col) buf(col) += tmp if(buf(col)>1000000) res += 1 } buf(row) =1 } println(res) }
问题54: How many hands did player one win in the game of poker?
题目简介:一个扑克牌游戏,判断提供的数据中玩家1赢的盘数有多少次
答 案:376
import scala.io.Source._ object Euler054 extends Application { val src = fromFile("poker.txt").getLines var cnt = 0 src.foreach{ hand => val lst = hand.split("\\s").toList val aPlayer = new CardHand(lst.take(5)) val bPlayer = new CardHand(lst.drop(5)) if(aPlayer > bPlayer) cnt += 1 } println(cnt) } class CardHand(cards:List[String]) extends Ordered[CardHand] { val map = Map('2'->2,'3'->3,'4'->4,'5'->5,'6'->6,'7'->7, '8'->8,'9'->9,'T'->10,'J'->11,'Q'->12,'K'->13,'A'->14) val values = cards.map{c => map(c.first)}.sort{ _ > _ } def rank :List[Int] = { val isFlush = cards.forall{ _.last == cards.first.last } val isStraight = values.zipWithIndex.forall{ case(x,y) => x + y == values.first } if(isFlush && isStraight) return 9::values if(isFlush) return 6::values if(isStraight) return 5::values val lst = values.map{ v =>(values.filter{ _==v }.size,v) }.removeDuplicates.sort{ _ > _ } val vst = lst.map{ _._2 } if(lst.first._1 == 4) return 8::vst if(lst.first._1 == 3) return if(lst(1)._1 == 2) 7::vst else 4::vst if(lst.first._1 == 2) return if(lst(1)._1 == 2) 3::vst else 2::vst 1::values } def compare(that:CardHand):Int = rank compare that.rank }
问题55:
How many Lychrel numbers are there below ten-thousand?
题目简介:首先介绍一个数学名词: 利克瑞尔数(Lychrel Number): 指的是将该数与将该数各数位逆序翻转后形成的新数相加、并将此过程反复迭代后,结果永远无法是一个回文数的自然数。
现在已知对于10000以内的自然数,要么能够在50步(指将这个数与其逆序后的数相加的过程)内得到一个回文数;要么该数是一个利克瑞尔数。
求:10000以内利克瑞尔数的个数
答 案:249
import java.math.BigInteger object Euler055 extends Application { var res = 0 for(n <- 1 until 10000){ var b:BigInt = n var s = b.toString var r = s.reverse var k = 0 do{ b = b + BigInt(r) s = b.toString r = s.reverse k += 1 }while(!s.sameElements(r) && k <= 50) if(k > 50) res += 1 } println(res) }
问题56: Considering natural numbers of the form, a^b, finding the maximum digital sum.
题目简介:记f(x)表示自然数x的各位数字之和,a^b表示a的b次方。对1≤a,b <100,求f(a^b)的最大值。
答 案:972
//Scala val nums = for(a <- 1 to 100;b <- 1 to 100) yield (a:BigInt).pow(b) nums.map{ _.toString.foldLeft(0){ _+_-'0' } }.foldLeft(0){ _ max _ }
问题57: Investigate the expansion of the continued fraction for the square root of two.
题目简介:2的平方根有连分数的表示:√2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...
展开其中的前四项为:
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
接下来的三项依次为: 99/70, 239/169,577/408
而第八项是 1393/985,注意,这是第一个出现分子位数超过分母位数的项(分子是4位数,而分母是3位数)
现在要求前1000项中,分子位数比分母位数多的个数。
答 案:153
object Euler057 extends Application { var res = 0 var a = BigInt(1) var b = BigInt(1) for(n <- 1 to 1000){ a = a + b + b b = a - b if(a.toString.length > b.toString.length) res += 1 } println(res) }
问题58:
Investigate the number of primes that lie on the diagonals of the spiral grid.
题目简介:将自然数按如下方式逆时针排列:
37 36 35 34 33 32 31
38 17 16 15 14 13 30
39 18 05 04 03 12 29
40 19 06 01 02 11 28
41 20 07 08 09 10 27
42 21 22 23 24 25 26
43 44 45 46 47 48 49
其中标红色的表示出现在对角线上且为素数的自然数,注意对角线上一共有13个自然数,其中8个为素数。也就是说素数所占的比例为 8/13 ≈ 62%.
将上述方阵继续排列下去,求使得对角线上素数比例小于10%的方阵的最小边长。
答 案:26241
object Euler058 extends Application { var ps:Stream[Int] = Stream.cons(2, Stream.from(3).filter{ n => ps.takeWhile(p => p*p <= n).forall(n%_ !=0) }) def isPrime(n:Int) = ps.takeWhile{ p => p*p<=n }.forall{ n%_ !=0 } val rate = 0.1 var count = 1 var primes = 0 var size = 1 var diag = 1 do{ size += 2 for(loop <- 1 to 4){ diag = diag + size -1 if(isPrime(diag)) primes += 1 } count += 4 }while(primes >= count*rate) println(size) }
问题59:
Using a brute force attack, can you decrypt the cipher using XOR encryption?
题目简介:使用暴力破解一段使用异或方式加密的英文文本。
答 案:107359
import scala.io.Source._ object Euler059 extends Application { def isLetter(c:Int):Boolean = " !\"'(),-.0123456789:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".indexOf(c) >= 0 var src = fromFile("cipher1.txt").getLine(1).split(",").map{ _.trim.toInt.toChar }.zipWithIndex var pw = for(idx <- 0 until 3) yield 'a'.to('z').find{ c => src.filter{ _._2%3 == idx }.forall{ s => isLetter(s._1^c) } }.get var sum = src.foldLeft(0){ (n,s) => n + (s._1^pw(s._2%3)) } println(sum) }
问题60: Find a set of five primes for which any two primes concatenate to produce another prime.
题目简介:自然数3, 7, 109, 673有着非常奇特的性质:
1.它们都是素数
2.它们任意两个连接而成的数也是素数。比如7与3相连得到73是素数
3.它们是满足上面两个性质并且使得和最小的一组数
现在要求5个素数使得其中任意两个连接得到的数也是素数,并且使这5个数之和最小。
输出这5个数之和
答 案:26033
import eastsun.math.Util._ import java.util.Arrays.binarySearch object Euler060 extends Application { //get primes below 100000000 val primes = getPrimes(100000000) def isPrime(n:Int) = binarySearch(primes,n) >= 0 //get intersection of la and lb,store in order def intersect(la:List[Int],lb:List[Int]):List[Int] = { var lx = la var ly = lb var ls:List[Int] = Nil while(!(lx.isEmpty || ly.isEmpty)){ var ix = lx.head var iy = ly.head if(ix >= iy) ly = ly.tail if(ix <= iy) lx = lx.tail if(ix == iy) ls = ix::ls } ls.reverse } def find(ls:List[Int]):Int = { var min = Integer.MAX_VALUE def find0(lx:List[Int],sum:Int,depth:Int){ if(lx.size < 4 - depth) return if(depth == 3) min = primes(lx.first)+ sum else lx.foreach{ x => find0(intersect(lx,items(x)),sum+primes(x),depth+1) } } find0(ls,0,0) min } val size = primes.findIndexOf{ _ >= 10000 } val items = new Array[List[Int]](size) for(i <- 0 until size){ var item = List[Int]() for(j <- i+1 until size){ var a = primes(i) var b = primes(j) if(isPrime((a+""+b).toInt) && isPrime((b+""+a).toInt) ) item = j::item } items(i) = item.reverse } var res = Integer.MAX_VALUE items.zipWithIndex.foreach{ iti => var f = find(iti._1) if(f < Integer.MAX_VALUE && f + primes(iti._2) < res) res = f + primes(iti._2) } println(res) }