官方文档对于如何调用多GPU已经说的很清楚:multi_gpu_model
,但仍有些细节,值得探讨:
keras.utils.multi_gpu_model(model, gpus)
将模型在多个GPU上复制
特别地,该函数用于单机多卡的数据并行支持,它按照下面的方式工作:
(1)将模型的输入分为多个子batch
(2)在每个设备上调用各自的模型,对各自的数据集运行
(3)将结果连接为一个大的batch(在CPU上)
例如,你的batch_size是64而gpus=2,则输入会被分为两个大小为32的子batch,在两个GPU上分别运行,通过连接后返回大小为64的结果。 该函数线性的增加了训练速度,最高支持8卡并行。*该函数只能在tf后端下使用
参数如下:
- model: Keras模型对象,为了避免OOM错误(内存不足),该模型应在CPU上构建,参考下面的例子。
- gpus: 大或等于2的整数,要并行的GPU数目。
该函数返回Keras模型对象,它看起来跟普通的keras模型一样,但实际上分布在多个GPU上。例子:
import tensorflow as tf
from keras.applications import Xception
from keras.utils import multi_gpu_model
import numpy as np
num_samples = 1000
height = 224
width = 224
num_classes = 1000
# Instantiate the base model
# (here, we do it on CPU, which is optional).
with tf.device('/cpu:0'):
model = Xception(weights=None,
input_shape=(height, width, 3),
classes=num_classes)
# Replicates the model on 8 GPUs.
# This assumes that your machine has 8 available GPUs.
parallel_model = multi_gpu_model(model, gpus=8)
parallel_model.compile(loss='categorical_crossentropy',
optimizer='rmsprop')
# Generate dummy data.
x = np.random.random((num_samples, height, width, 3))
y = np.random.random((num_samples, num_classes))
# This `fit` call will be distributed on 8 GPUs.
# Since the batch size is 256, each GPU will process 32 samples.
parallel_model.fit(x, y, epochs=20, batch_size=256)
但是在parallel_model.fit()
结束后,使用代码parallel_model.save()
保存却出现错误:
parallel_model.save('test.h5')
Traceback (most recent call last):
File "", line 1, in
parallel_model.save('test.h5')
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.py", line 2556, in save
save_model(self, filepath, overwrite, include_optimizer)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/models.py", line 107, in save_model
'config': model.get_config()
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/topology.py", line 2397, in get_config
return copy.deepcopy(config)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 230, in _deepcopy_list
y.append(deepcopy(a, memo))
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 237, in _deepcopy_tuple
y.append(deepcopy(a, memo))
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 237, in _deepcopy_tuple
y.append(deepcopy(a, memo))
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
state = deepcopy(state, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
state = deepcopy(state, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 264, in _deepcopy_method
return type(x)(x.im_func, deepcopy(x.im_self, memo), x.im_class)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
state = deepcopy(state, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 230, in _deepcopy_list
y.append(deepcopy(a, memo))
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
state = deepcopy(state, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 298, in _deepcopy_inst
state = deepcopy(state, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 190, in deepcopy
y = _reconstruct(x, rv, 1, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 334, in _reconstruct
state = deepcopy(state, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 163, in deepcopy
y = copier(x, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 257, in _deepcopy_dict
y[deepcopy(key, memo)] = deepcopy(value, memo)
File "/home/dexter/anaconda2/envs/tensorflow/lib/python2.7/copy.py", line 182, in deepcopy
rv = reductor(2)
TypeError: can't pickle thread.lock objects
这个问题困扰了我很久,最后在 keras-team/keras/issues#8446&issues#8253找到正解。
不过当时提问者报错为:
TypeError: can’t pickle module objects
与我的TypeError: can't pickle thread.lock objects
大同小异,解决方法如下:
意思就是直接使用传入方法
keras.utils.multi_gpu_model(model, gpus)
中的
model
即可,而不要使用返回的
parallel_model
,即:
model.save('xxx.h5')