深入理解ThreadLocal的"内存溢出"

阅读更多

背景

对ThreadLocal的实际使用场景一直有点模糊。在code review中大家对ThreadLocal是否会出现内存泄漏问题提出不同看法。故上网一探究竟,但是发现网上的说法不一,有的说会导致内存泄漏有的说不会,很难发现实战的结晶。

分析

结构

一个简洁的ThreadLocal类的内部结构如下

public class ThreadLocal {
       static class ThreadLocalMap {
              static class Entry extends WeakReference {
                     Object value;
                     Entry(ThreadLocal k, Object v) {
                           super(k);
                           value = v;
                     }
                     private ThreadLocal.ThreadLocalMap.Entry[] table;
              }
       }
}

 ThreadLocal类中定义了一个静态内部类ThreadLocalMap,ThreadLocalMap并没有实现Map接口,而是自己"实现"了一个Map,在ThreadLocalMap内部定义了一个静态内部类Entry继承自WeakReference,寻找一下对WeakReference的记忆—当所引用的对象在JVM内不再有强引用指向时,GC后weak reference将会被自动回收。

流程

然后,我们从创建的流程来看一下

    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
当线程首次调用set方法,并不能获取到ThreadLocalMap,于是ThreadLocalMap被创建
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

    ThreadLocalMap(ThreadLocal firstKey, Object firstValue){
       table = new Entry[INITIAL_CAPACITY];
       int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
       table[i] = new Entry(firstKey, firstValue);
       size = 1;
       setThreshold(INITIAL_CAPACITY);
    }

 可以看到ThreadLocalMap以当前ThreadLocal对象为key被创建,其内部存储结构如上,将key进行hash计算后,再将key和value放入Entry中,

注意一下上面t.threadLocals = new ThreadLocalMap(this, firstValue),实际上是一个Thread的成员变量在引用着这个ThreadLocalMap如下

public class Thread{
    ThreadLocal.ThreadLocalMap threadLocals = null;
}
 所以我们可以分析,当Thread运行结束后(没有线程池):

 

  • 这个ThreadLocalMap对象会被GC回收
  • ThreadLocalMap的成员变量table所指向的对象会被gc回收,这时注意Entry是继承了WeakReference的,所以Entry对象也会被gc回收
  • value作为Entry的成员变量自然也会被gc回收

结论

这样看来,较为严谨的说法是,在不使用线程池的前提下,即使不调用remove方法,线程的"变量副本"也会被gc回收,即不会造成内存泄漏的情况。

问题

1、那在使用线程池的情况下呢?会不会出现内存泄漏的问题呢?我做了这样一个简单的小测试

    public static void testThreadLocalExist(){
        ExecutorService service = Executors.newSingleThreadExecutor();
        for (int i = 0; i < 10; i++) {
            if(i == 0){
                service.execute(new Runnable() {
                    public void run() {
                        System.out.println("Thread id is " + Thread.currentThread().getId());
                        threadLocal.set("variable");
                    }
                });
            } else if(i > 0){
                service.execute(new Runnable() {
                    public void run() {
                        if("variable".equals(threadLocal.get())){
                            System.out.println("Thread id " + Thread.currentThread().getId() + " got it !");
                        }
                    }
                });
            }
        }
    }

输出:
Thread id is 9
Thread id 9 got it !
Thread id 9 got it !
Thread id 9 got it !
Thread id 9 got it !
Thread id 9 got it !
Thread id 9 got it !
Thread id 9 got it !
Thread id 9 got it !
Thread id 9 got it !
 如上测试,我初始化了一个线程数量为1的线程池,为了保证每次线程池中获取到的都是同一个线程
那么根据这个测试可以看出,当线程从线程池中再次被调用的时候,这个"变量副本"是可以获取到的,即内存可能会发生泄漏,但没有实战的情况下,无法预估其影响。
2、那么当使用线程池的情况下,出于安全起见如何避免发生内存泄漏呢?在上面的测试中,做一点小小的变化
    public static void testThreadLocalExist() {
        ExecutorService service = Executors.newSingleThreadExecutor();
        for (int i = 0; i < 10; i++) {
            if (i == 0) {
                service.execute(new Runnable() {
                    public void run() {
                        System.out.println("Thread id is " + Thread.currentThread().getId());
                        threadLocal.set("variable");
                        threadLocal.remove();
                    }
                });
            } else {
                service.execute(new Runnable() {
                    public void run() {
                        if ("variable".equals(threadLocal.get())) {
                            System.out.println("Thread id " + Thread.currentThread().getId() + " get it !");
                        } else {
                            System.out.println("Thread id " + Thread.currentThread().getId() + " can't get it !");
                        }
                    }
                });
            }
        }
    }
输出:
Thread id is 9
Thread id 9 can't get it !
Thread id 9 can't get it !
Thread id 9 can't get it !
Thread id 9 can't get it !
Thread id 9 can't get it !
Thread id 9 can't get it !
Thread id 9 can't get it !
Thread id 9 can't get it !
Thread id 9 can't get it !
  如上测试,在原来的基础上,在线程第一次运行完之前调用ThreadLocal的remove方法,然后再将线程放回线程池,这样当这个线程再次被调用时,"变量副本"已经不存在了。
当ThreadLocal在调用remove方法的时候,其实就是调用 ThreadLocalMap的remove方法
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }
 那就深入看看ThreadLocalMap的remove方法吧
     private void remove(ThreadLocal key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }
 可以看到在清空Entry之后,又调用了expungeStaleEntry方法
       private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }
 这里对防止内存泄漏做了一些处理,请注意红色的部分,手动将value的值赋为null,让下轮gc可以回收这个value对象。
以上内容为个人分析和测试,真实情况请以实战为准。如果对以上的分析,感觉有不合理的地方请大家指出,共同学习。

你可能感兴趣的:(ThreadLocal,源码)