1. compatible节点:
qpnp-vm-bms.c使用来控制电池曲线的和BMS功能的,其compatible节点是"qcom,qpnp-vm-bms"
2. probe函数:
qpnp_vm_bms_probe函数如下:
static int qpnp_vm_bms_probe(struct spmi_device *spmi)
{
struct qpnp_bms_chip *chip;
struct device_node *revid_dev_node;
int rc, vbatt = 0;
chip = devm_kzalloc(&spmi->dev, sizeof(*chip), GFP_KERNEL);
if (!chip) {
pr_err("kzalloc() failed.\n");
return -ENOMEM;
}
//获取ADC的值,ADC是电流的大小,绑定vadc,并且获取温度,设备列表
rc = bms_get_adc(chip, spmi);
if (rc < 0) {
pr_err("Failed to get adc rc=%d\n", rc);
return rc;
}
//指向revision外围节点的phandle,vm-bus需要配置这个节点
revid_dev_node = of_parse_phandle(spmi->dev.of_node,
"qcom,pmic-revid", 0);
if (!revid_dev_node) {
pr_err("Missing qcom,pmic-revid property\n");
return -EINVAL;
}
//返回pmic的修订信息
chip->revid_data = get_revid_data(revid_dev_node);
if (IS_ERR(chip->revid_data)) {
pr_err("revid error rc = %ld\n", PTR_ERR(chip->revid_data));
return -EINVAL;
}
if ((chip->revid_data->pmic_subtype == PM8916_V2P0_SUBTYPE) &&
chip->revid_data->rev4 == PM8916_V2P0_REV4)
chip->workaround_flag |= WRKARND_PON_OCV_COMP;
//查看是否是热启动的,热启动就是在不关闭设备的情况下,重启电脑
rc = qpnp_pon_is_warm_reset();
if (rc < 0) {
pr_err("Error reading warm reset status rc=%d\n", rc);
return rc;
}
chip->warm_reset = !!rc;
//解析spmi设备的内容,并且在其中寻找它的中断基地址
rc = parse_spmi_dt_properties(chip, spmi);
if (rc) {
pr_err("Error registering spmi resource rc=%d\n", rc);
return rc;
}
//解析电池的参数,如v-cutoff-uv,关机电压,它不会读qcom的内容,会直接读qcom,后面的内容会有仔细说
rc = parse_bms_dt_properties(chip);
if (rc) {
pr_err("Unable to read all bms properties, rc = %d\n", rc);
return rc;
}
//查询错误的原因
if (chip->dt.cfg_disable_bms) {
pr_info("VMBMS disabled (disable-bms = 1)\n");
rc = qpnp_masked_write_base(chip, chip->base + EN_CTL_REG,
BMS_EN_BIT, 0);
if (rc)
pr_err("Unable to disable VMBMS rc=%d\n", rc);
return -ENODEV;
}
//读取存在pm?PM里读出来的未经修正的原始数据?
rc = qpnp_read_wrapper(chip, chip->revision,
chip->base + REVISION1_REG, 2);
if (rc) {
pr_err("Error reading version register rc=%d\n", rc);
return rc;
}
pr_debug("BMS version: %hhu.%hhu\n",
chip->revision[1], chip->revision[0]);
dev_set_drvdata(&spmi->dev, chip);
device_init_wakeup(&spmi->dev, 1);
mutex_init(&chip->bms_data_mutex);
mutex_init(&chip->bms_device_mutex);
mutex_init(&chip->last_soc_mutex);
mutex_init(&chip->state_change_mutex);
init_waitqueue_head(&chip->bms_wait_q); //初始化队列
/* read battery-id and select the battery profile */
//设置电池数据,也就是电池曲线
rc = set_battery_data(chip);
if (rc) {
pr_err("Unable to read battery data %d\n", rc);
goto fail_init;
}
/* set the battery profile */
//设置电池的配置文件,其实也就是配置刚刚设置好的全局变量了
rc = config_battery_data(chip->batt_data);
if (rc) {
pr_err("Unable to config battery data %d\n", rc);
goto fail_init;
}
//初始化wakeup_source,内核睡眠机制
wakeup_source_init(&chip->vbms_lv_wake_source.source, "vbms_lv_wake");
wakeup_source_init(&chip->vbms_cv_wake_source.source, "vbms_cv_wake");
wakeup_source_init(&chip->vbms_soc_wake_source.source, "vbms_soc_wake");
//初始化工作队列
INIT_DELAYED_WORK(&chip->monitor_soc_work, monitor_soc_work);
INIT_DELAYED_WORK(&chip->voltage_soc_timeout_work,
voltage_soc_timeout_work);
//初始化配置状态,各种状态
bms_init_defaults(chip);
//这一句看不懂了,可能是电池BMS算法用来读取硬件配置的
bms_load_hw_defaults(chip);
//通过判断power_supply里面的函数来确定是否是正在充电的状态
is_bat_pres_ght =(is_battery_present(chip));
pr_err("is_bat_pres_ght =%d\n",is_bat_pres_ght);
///if (is_battery_present(chip)) {
//如果电池正在充电
if (is_bat_pres_ght) {
//设置电池的设置低电(高电,高温,低温)的阈值,也就是电池低电关机
rc = setup_vbat_monitoring(chip);
if (rc) {
pr_err("fail to configure vbat monitoring rc=%d\n",
rc);
goto fail_setup;
}
}
//请求一些相应的中断BMS
rc = bms_request_irqs(chip);
if (rc) {
pr_err("error requesting bms irqs, rc = %d\n", rc);
goto fail_irq;
}
//电池一些常规的检测,主要从PMIC上读到的相关信息
//电池的插入状态检测,判断手段是如果当前状态和之前状态不一样就判断电池拔出,并且确定电池是否存在,否则重置
battery_insertion_check(chip);
//电池状态检测
battery_status_check(chip);
/* character device to pass data to the userspace */
//向上层注册字符设备
rc = register_bms_char_device(chip);
if (rc) {
pr_err("Unable to regiter '/dev/vm_bms' rc=%d\n", rc);
goto fail_bms_device;
}
the_chip = chip;
//这个也很重要,我们从上节知道,初值last_ocv_soc是非常重要的,决定着后面的soc估值算法,计算估值电压
calculate_initial_soc(chip);
if (chip->dt.cfg_battery_aging_comp) {
rc = calculate_initial_aging_comp(chip);
if (rc)
pr_err("Unable to calculate initial aging data rc=%d\n",
rc);
}
//设置和注册电池的power supply
/* setup & register the battery power supply */
chip->bms_psy.name = "bms";
chip->bms_psy.type = POWER_SUPPLY_TYPE_BMS;
chip->bms_psy.properties = bms_power_props;
chip->bms_psy.num_properties = ARRAY_SIZE(bms_power_props);
chip->bms_psy.get_property = qpnp_vm_bms_power_get_property;
chip->bms_psy.set_property = qpnp_vm_bms_power_set_property;
chip->bms_psy.external_power_changed = qpnp_vm_bms_ext_power_changed;
chip->bms_psy.property_is_writeable = qpnp_vm_bms_property_is_writeable;
chip->bms_psy.supplied_to = qpnp_vm_bms_supplicants;
chip->bms_psy.num_supplicants = ARRAY_SIZE(qpnp_vm_bms_supplicants);
//power_supply注册
rc = power_supply_register(chip->dev, &chip->bms_psy);
if (rc < 0) {
pr_err("power_supply_register bms failed rc = %d\n", rc);
goto fail_psy;
}
chip->bms_psy_registered = true;
rc = get_battery_voltage(chip, &vbatt);
if (rc) {
pr_err("error reading vbat_sns adc channel=%d, rc=%d\n",
VBAT_SNS, rc);
goto fail_get_vtg;
}
chip->debug_root = debugfs_create_dir("qpnp_vmbms", NULL);
if (!chip->debug_root)
pr_err("Couldn't create debug dir\n");
if (chip->debug_root) {
struct dentry *ent;
ent = debugfs_create_file("bms_data", S_IFREG | S_IRUGO,
chip->debug_root, chip,
&bms_data_debugfs_ops);
if (!ent)
pr_err("Couldn't create bms_data debug file\n");
ent = debugfs_create_file("bms_config", S_IFREG | S_IRUGO,
chip->debug_root, chip,
&bms_config_debugfs_ops);
if (!ent)
pr_err("Couldn't create bms_config debug file\n");
ent = debugfs_create_file("bms_status", S_IFREG | S_IRUGO,
chip->debug_root, chip,
&bms_status_debugfs_ops);
if (!ent)
pr_err("Couldn't create bms_status debug file\n");
}
//这里启动工作队列,绝大部分的工作内容都是在这里完成的
schedule_delayed_work(&chip->monitor_soc_work, 0);
/*
* schedule a work to check if the userspace vmbms module
* has registered. Fall-back to voltage-based-soc reporting
* if it has not.
*/
//
schedule_delayed_work(&chip->voltage_soc_timeout_work,
msecs_to_jiffies(chip->dt.cfg_voltage_soc_timeout_ms));
pr_info("probe success: soc=%d vbatt=%d ocv=%d warm_reset=%d\n",
get_prop_bms_capacity(chip), vbatt,
chip->last_ocv_uv, chip->warm_reset);
return rc;
fail_get_vtg:
power_supply_unregister(&chip->bms_psy);
fail_psy:
device_destroy(chip->bms_class, chip->dev_no);
cdev_del(&chip->bms_cdev);
unregister_chrdev_region(chip->dev_no, 1);
fail_bms_device:
chip->bms_psy_registered = false;
fail_irq:
reset_vbat_monitoring(chip);
fail_setup:
wakeup_source_trash(&chip->vbms_lv_wake_source.source);
wakeup_source_trash(&chip->vbms_cv_wake_source.source);
wakeup_source_trash(&chip->vbms_soc_wake_source.source);
fail_init:
mutex_destroy(&chip->bms_data_mutex);
mutex_destroy(&chip->last_soc_mutex);
mutex_destroy(&chip->state_change_mutex);
mutex_destroy(&chip->bms_device_mutex);
the_chip = NULL;
return rc;
}
2.1 parse_bms_dt_properties()函数
在这里我们详细分析一下各个节点的内容,这里就挑几个比较重要的看看:(详细可以参考设备树里面的内容)
- v-cutoff-uv:如修改关机电压,除了修改这里,还需要修改电池曲线数据的qcom,v-cutoff-uv,其实最好是用电池曲线数据里的
- max-voltage-uv:电池最大的电压,单位为毫伏
- qcom,r-conn-mohm :连接器的电阻
- s1-sample-interval-ms:状态s1下累加器的采样(毫秒)。(即)累加器充满vbat样本的速率。最小值=0最大值=2550ms。
- resume-soc:当充满的电池百分比低于此值,则重新开始充电。
- volatge-soc-timeout-ms:如果没有使用VMBMS算法来计算SOC,模块在此时间后基于SOC来报告电压。
- low-temp-threshold:当温度阈值低于此值,禁用IBAT求取平均值和UUC(不可用电量)平滑功能,如没指定默认为0,我们这里没有指定。
- qcom,ignore-shutdown-soc:有些不看翻译对大家都好;
- qcom,use-voltage-soc :BMS根据此项的值来决定是否采用基于电压的SOC来替代基于库伦电量计的方式
- qcom,use-reported-soc :此项使能reported_soc逻辑,而且要定义qcom,resume-soc为一个合适的值,BMS也需要控制充电、停止充电和重新充电。高通给出的代码默认是定义qcom,use-reported-soc,但我们核心板厂家注释掉此项,并增加qcom,report-charger-eoc
- qcom,report-charger-eoc: 指示BMS需要通知EOC(充电结束)给充电器
- qcom,disable-bms :此属性用于关闭VM BMS硬件模块
2.2 set_battery_data()函数
这一部分内容就是设置电池曲线内容:
下面就是电池曲线的详细内容,不仔细说了:
static int set_battery_data(struct qpnp_bms_chip *chip)
{
int64_t battery_id;
int rc = 0;
struct bms_battery_data *batt_data;
struct device_node *node;
//里面的内容通过读取ADC来获取ID号
battery_id = read_battery_id(chip);
if (battery_id < 0) {
pr_err("cannot read battery id err = %lld\n", battery_id);
return battery_id;
}
node = of_find_node_by_name(chip->spmi->dev.of_node,
"qcom,battery-data");
if (!node) {
pr_err("No available batterydata\n");
return -EINVAL;
}
batt_data = devm_kzalloc(chip->dev,
sizeof(struct bms_battery_data), GFP_KERNEL);
if (!batt_data) {
pr_err("Could not alloc battery data\n");
return -EINVAL;
}
batt_data->fcc_temp_lut = devm_kzalloc(chip->dev,
sizeof(struct single_row_lut), GFP_KERNEL);
batt_data->pc_temp_ocv_lut = devm_kzalloc(chip->dev,
sizeof(struct pc_temp_ocv_lut), GFP_KERNEL);
batt_data->rbatt_sf_lut = devm_kzalloc(chip->dev,
sizeof(struct sf_lut), GFP_KERNEL);
batt_data->ibat_acc_lut = devm_kzalloc(chip->dev,
sizeof(struct ibat_temp_acc_lut), GFP_KERNEL);
batt_data->max_voltage_uv = -1;
batt_data->cutoff_uv = -1;
batt_data->iterm_ua = -1;
/*
* if the alloced luts are 0s, of_batterydata_read_data ignores
* them.
*/
rc = of_batterydata_read_data(node, batt_data, battery_id);
if (rc || !batt_data->pc_temp_ocv_lut
|| !batt_data->fcc_temp_lut
|| !batt_data->rbatt_sf_lut
|| !batt_data->ibat_acc_lut) {
pr_err("battery data load failed\n");
devm_kfree(chip->dev, batt_data->fcc_temp_lut);
devm_kfree(chip->dev, batt_data->pc_temp_ocv_lut);
devm_kfree(chip->dev, batt_data->rbatt_sf_lut);
devm_kfree(chip->dev, batt_data->ibat_acc_lut);
devm_kfree(chip->dev, batt_data);
return rc;
}
if (batt_data->pc_temp_ocv_lut == NULL) {
pr_err("temp ocv lut table has not been loaded\n");
devm_kfree(chip->dev, batt_data->fcc_temp_lut);
devm_kfree(chip->dev, batt_data->pc_temp_ocv_lut);
devm_kfree(chip->dev, batt_data->rbatt_sf_lut);
devm_kfree(chip->dev, batt_data->ibat_acc_lut);
devm_kfree(chip->dev, batt_data);
return -EINVAL;
}
/* check if ibat_acc_lut is valid */
if (!batt_data->ibat_acc_lut->rows) {
pr_info("ibat_acc_lut not present\n");
devm_kfree(chip->dev, batt_data->ibat_acc_lut);
batt_data->ibat_acc_lut = NULL;
}
/* Override battery properties if specified in the battery profile */
if (batt_data->max_voltage_uv >= 0)
chip->dt.cfg_max_voltage_uv = batt_data->max_voltage_uv;
if (batt_data->cutoff_uv >= 0)
chip->dt.cfg_v_cutoff_uv = batt_data->cutoff_uv;
chip->batt_data = batt_data;
return 0;
}
在of_batterydata_read_data
函数中有一个返回值:
of_batterydata_read_data->
of_batterydata_load_battery_data
of_batterydata_load_battery_data函数中有配置电池曲线的东西;
2.3 高通电量计
术语 | 全称 | 注释 |
---|---|---|
FCC | Full-Charge Capacity | 满电荷电量 |
UC | Remaining capacity | RC 剩余电量 |
CC | Coulumb counter | 电量计 |
UUC | Unusable capacity | 不可用电量 |
RUC | Remaining usable capacity // | RUC=RC-CC-UUC RUC=RC-CC-UUC,剩余可用电量 |
SoC | State of charge | 电量百分比 |
OCV | Open circuit voltage | 开路电压,电池在开路状态下的端电压称为开路电压 |
SOC=(RC-CC-UUC)/(FCC-UUC)
以下是各个变量的计算方法:
2.3.1 FCC:
在校准的电池profile中有定义,会随温度有变化;
static struct single_row_lut fcc_temp = {
.x = {-20, 0, 25, 40, 60},
.y = {3193, 3190, 3190, 3180, 3183},
.cols = 5
}
对应电池曲线的qcom,fcc-temp-lut;
2.3.2 pc-temp-ocv-lut:
qcom,pc-temp-ocv-lut,为温度、SOC对应得电压表,PMU8909获取的电压值,通过查该表,在温度和电压下,可得到当前的SOC。
对应电池曲线的qcom,pc-temp-ocv-lut
2.3.3 rbatt-sf-lut:
rbatt-sf-lut,为温度、soc对应的电池内阻表,这里主要考虑内阻的影响,对OCV的修正,new_ocv=ocv+rbatt(内阻)*current(当前电流)。
对应电池曲线的qcom,rbatt-sf-lut
2.3.3 ibat-acc-luit
ibat-acc-luit,为温度、电流对应的acc表,这两个是起到修正SOC的作用
对应电池曲线的qcom, ibat-acc-luit
2.3.4 计算公式
soc_uuc = ((fcc - acc) * 100) / fcc,
//fcc在qcom,fcc-temp-lut查表可知、acc在qcom, ibat-acc-luit查表可知
soc_acc = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_uuc),(100 - soc_uuc));
//最终soc_acc,为上报的SOC.soc_ocv则是在qcom,pc-temp-ocv-lut查表可知
2.3.5 BMS算法
会上报事件uevent,当HAL层,收到消息,然后调用getprop的方法,获取相关的参数,如,电阻、电流、fcc、acc等,来估算出last_ocv_uv,然后调用setprop,把该值设下去,并启动工作线程,根据last_ocv_uv,查表得到soc,并经过修正SOC,并再次上报事件,循环下去。这个估值算法,我猜可能是一套学习算法,具体的没有源码,不清楚,只知道它把算法变为.bin文件,用了binder机制,作为服务一直运行。
我们如何知道monitor_soc_work
函数不断的运行呢?
原因在于:
static void monitor_soc_work(struct work_struct *work) {
......
if ((chip->last_soc != chip->calculated_soc) ||
chip->dt.cfg_use_voltage_soc)
schedule_delayed_work(&chip->monitor_soc_work,
msecs_to_jiffies(get_calculation_delay_ms(chip)));
}
2.3.6 分析如何确定初始的last_ocv_uv:
static int calculate_initial_soc(struct qpnp_bms_chip *chip)
{
........
........
//读当前电池温度
rc = get_batt_therm(chip, &batt_temp);
............
//读PON OCV
rc = read_and_update_ocv(chip, batt_temp, true);
..........
//读关机保存的soc和last_soc_uv
rc = read_shutdown_ocv_soc(chip);
//这里判断是使用估计soc还是估值soc。如果chip->warm_reset 为真
if (chip->warm_reset) {
if (chip->shutdown_soc_invalid) { //这个是dtsi的一个配置选项,若没有配置,
//则不使用关机soc
est_ocv = estimate_ocv(chip); //估值soc
chip->last_ocv_uv = est_ocv;
} else {
chip->last_ocv_uv = chip->shutdown_ocv;//使用关机的soc和ocv
pr_err("Hyan %d : set chip->last_ocv_uv = %d\n", __LINE__, chip->last_ocv_uv);
chip->last_soc = chip->shutdown_soc;
chip->calculated_soc = lookup_soc_ocv(chip,
chip->shutdown_ocv, batt_temp);
}
} else {
if (chip->workaround_flag & WRKARND_PON_OCV_COMP)
adjust_pon_ocv(chip, batt_temp);
/* !warm_reset use PON OCV only if shutdown SOC is invalid */
chip->calculated_soc = lookup_soc_ocv(chip,
chip->last_ocv_uv, batt_temp);
if (!chip->shutdown_soc_invalid &&
(abs(chip->shutdown_soc - chip->calculated_soc) <
chip->dt.cfg_shutdown_soc_valid_limit)) {
chip->last_ocv_uv = chip->shutdown_ocv;
chip->last_soc = chip->shutdown_soc;
chip->calculated_soc = lookup_soc_ocv(chip,
chip->shutdown_ocv, batt_temp);//使用估值soc
} else {
chip->shutdown_soc_invalid = true; //使用关机soc
}
}
.............
............
}
//得到PON OCV
rc = read_and_update_ocv(chip, batt_temp, true);
ocv_uv = convert_vbatt_raw_to_uv(chip, ocv_data, is_pon_ocv);
uv = vadc_reading_to_uv(reading, true); //读ADC值
uv = adjust_vbatt_reading(chip, uv); //转化为soc_uv
rc = qpnp_vbat_sns_comp_result(chip->vadc_dev, &uv, is_pon_ocv); //根据IC的类型,进行温度补偿
//从寄存器中读到储存的soc和ocv
read_shutdown_ocv_soc
rc = qpnp_read_wrapper(chip, (u8 *)&stored_ocv,
chip->base + BMS_OCV_REG, 2);
rc = qpnp_read_wrapper(chip, &stored_soc, chip->base + BMS_SOC_REG, 1);
adjust_pon_ocv(struct qpnp_bms_chip *chip, int batt_temp)
rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result);
pc = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,
batt_temp, chip->last_ocv_uv / 1000); //根据ocv和temp,查表得PC(soc)。
rbatt_mohm = get_rbatt(chip, pc, batt_temp); //根据soc和temp,得电池内阻值
/* convert die_temp to DECIDEGC */
die_temp = (int)result.physical / 100;
current_ma = interpolate_current_comp(die_temp); //当前电流
delta_uv = rbatt_mohm * current_ma;
chip->last_ocv_uv += delta_uv; //修正last_ocv_uv
//这个函数主要根据last_ocv_uv,计算出soc的
lookup_soc_ocv(struct qpnp_bms_chip *chip, int ocv_uv, int batt_temp)
//查表得到soc_ocv,soc_cutoff
soc_ocv = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,
batt_temp, ocv_uv / 1000);
soc_cutoff = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,
batt_temp, chip->dt.cfg_v_cutoff_uv / 1000);
soc_final = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_cutoff),
(100 - soc_cutoff));
if (batt_temp > chip->dt.cfg_low_temp_threshold)
iavg_ma = calculate_uuc_iavg(chip);
else
iavg_ma = chip->current_now / 1000;
//查表得到FCC,ACC
fcc = interpolate_fcc(chip->batt_data->fcc_temp_lut,
batt_temp);
acc = interpolate_acc(chip->batt_data->ibat_acc_lut,
batt_temp, iavg_ma);
//计算出UUC
soc_uuc = ((fcc - acc) * 100) / fcc;
if (batt_temp > chip->dt.cfg_low_temp_threshold)
soc_uuc = adjust_uuc(chip, soc_uuc);
//得到soc_acc
soc_acc = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_uuc),
(100 - soc_uuc));
soc_final = soc_acc; //这个为上报的soc
chip->last_acc = acc;
在这里获取last_ocv_uv,温度;
2.3.7 工作队列monitor_soc_work
static void monitor_soc_work(struct work_struct *work)
{
struct qpnp_bms_chip *chip = container_of(work,
struct qpnp_bms_chip,
monitor_soc_work.work);
int rc, new_soc = 0, batt_temp;
bms_stay_awake(&chip->vbms_soc_wake_source);
//计算上次工作队列和这次工作队列的差值
calculate_delta_time(&chip->tm_sec, &chip->delta_time_s);
pr_debug("elapsed_time=%d\n", chip->delta_time_s);
mutex_lock(&chip->last_soc_mutex);
//电池不存在,报100%电量
if (!is_battery_present(chip)) {
/* if battery is not preset report 100% SOC */
pr_debug("battery gone, reporting 100\n");
chip->last_soc_invalid = true;
chip->last_soc = -EINVAL;
new_soc = 100;
} else {
//检测电池电压
battery_voltage_check(chip);
//假设这个qcom,use-voltage-soc节点打开,就使用电压来计算soc
if (chip->dt.cfg_use_voltage_soc) {
//通过电压计算soc
calculate_soc_from_voltage(chip);
} else {
//获取电池的温度
rc = get_batt_therm(chip, &batt_temp);
if (rc < 0) {
pr_err("Unable to read batt temp rc=%d, using default=%d\n",
rc, BMS_DEFAULT_TEMP);
batt_temp = BMS_DEFAULT_TEMP;
}
if (chip->last_soc_invalid) {
chip->last_soc_invalid = false;
chip->last_soc = -EINVAL;
}
//这里使用last_ocv_uv算出soc的
new_soc = lookup_soc_ocv(chip, chip->last_ocv_uv,
batt_temp);
/* clamp soc due to BMS hw/sw immaturities */
new_soc = clamp_soc_based_on_voltage(chip, new_soc);
//上次的电压不等于这次的电压
if (chip->calculated_soc != new_soc) {
pr_debug("SOC changed! new_soc=%d prev_soc=%d\n",
new_soc, chip->calculated_soc);
chip->calculated_soc = new_soc;
/*
* To recalculate the catch-up time, clear it
* when SOC changes.
*/
chip->catch_up_time_sec = 0;
if (chip->calculated_soc == 100)
/* update last_soc immediately */
report_vm_bms_soc(chip);
pr_debug("update bms_psy\n");
power_supply_changed(&chip->bms_psy);
} else if (chip->last_soc != chip->calculated_soc) {
pr_debug("update bms_psy\n");
power_supply_changed(&chip->bms_psy);
} else {
report_vm_bms_soc(chip);
}
}
/* low SOC configuration */
low_soc_check(chip);
}
/*
* schedule the work only if last_soc has not caught up with
* the calculated soc or if we are using voltage based soc
*/
if ((chip->last_soc != chip->calculated_soc) ||
chip->dt.cfg_use_voltage_soc)
schedule_delayed_work(&chip->monitor_soc_work,
msecs_to_jiffies(get_calculation_delay_ms(chip)));
//复充标志位
if (chip->reported_soc_in_use && chip->charger_removed_since_full
&& !chip->charger_reinserted) {
/* record the elapsed time after last reported_soc change */
chip->reported_soc_change_sec += chip->delta_time_s;
pr_debug("reported_soc_change_sec=%d\n",
chip->reported_soc_change_sec);
/* above the catch up time, calculate new reported_soc */
if (chip->reported_soc_change_sec > UI_SOC_CATCHUP_TIME) {
calculate_reported_soc(chip);
chip->reported_soc_change_sec = 0;
}
}
mutex_unlock(&chip->last_soc_mutex);
bms_relax(&chip->vbms_soc_wake_source);
}
上面注释已经写的差不多了;看一下上报函数report_vm_bms_soc
:
last_soc其实与calcaulte_soc差不多,但是last_soc也包括了上次开机前的soc
static int report_vm_bms_soc(struct qpnp_bms_chip *chip)
{
int soc, soc_change, batt_temp, rc;
int time_since_last_change_sec = 0, charge_time_sec = 0;
unsigned long last_change_sec;
bool charging;
soc = chip->calculated_soc;
last_change_sec = chip->last_soc_change_sec;
//计算上次电量改变的情况
calculate_delta_time(&last_change_sec, &time_since_last_change_sec);
//判断电量是否正在充电
charging = is_battery_charging(chip);
pr_debug("charging=%d last_soc=%d last_soc_unbound=%d\n",
charging, chip->last_soc, chip->last_soc_unbound);
/*
* account for charge time - limit it to SOC_CATCHUP_SEC to
* avoid overflows when charging continues for extended periods
*/
//正在充电,last_soc是指上一次的最开始开机的soc,与计算出来的soc不一样,这是第一次,last_soc之后就会改变了,这里是初始化时间
//这段大概是BMS算法机制的东西,说明充电时间-将其限制在SOC_catchup_sec,以避免充电持续较长时间时溢出
if (charging && chip->last_soc != -EINVAL) {
if (chip->charge_start_tm_sec == 0 ||
(chip->catch_up_time_sec == 0 &&
(abs(soc - chip->last_soc) >= MIN_SOC_UUC))) {
/*
* calculating soc for the first time
* after start of chg. Initialize catchup time
*/
if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC)
chip->catch_up_time_sec =
(soc - chip->last_soc)
* SOC_CATCHUP_SEC_PER_PERCENT;
else
chip->catch_up_time_sec = SOC_CATCHUP_SEC_MAX;
chip->chg_start_soc = chip->last_soc;
if (chip->catch_up_time_sec < 0)
chip->catch_up_time_sec = 0;
chip->charge_start_tm_sec = last_change_sec;
pr_debug("chg_start_soc=%d charge_start_tm_sec=%d catch_up_time_sec=%d\n",
chip->chg_start_soc, chip->charge_start_tm_sec,
chip->catch_up_time_sec);
}
charge_time_sec = min(SOC_CATCHUP_SEC_MAX, (int)last_change_sec
- chip->charge_start_tm_sec);
/* end catchup if calculated soc and last soc are same */
if (chip->last_soc == soc) {
chip->catch_up_time_sec = 0;
chip->chg_start_soc = chip->last_soc;
}
}
//充电状态
if (chip->last_soc != -EINVAL) {
/*
* last_soc < soc ... if we have not been charging at all
* since the last time this was called, report previous SoC.
* Otherwise, scale and catch up.
*/
rc = get_batt_therm(chip, &batt_temp);
if (rc)
batt_temp = BMS_DEFAULT_TEMP;
//如果这次的soc改变变大。并且不处于充电模式,soc跟着last_soc一样,就是排除不充电且电量变大的情况
if (chip->last_soc < soc && !charging)
soc = chip->last_soc;
else if (chip->last_soc < soc && soc != 100)
//缩小计算的soc与last_soc的进度
soc = scale_soc_while_chg(chip, charge_time_sec,
chip->catch_up_time_sec,
soc, chip->chg_start_soc);
//如果电池接近切断,或者电池温度低于低温阈值,允许更大的变化
if (bms_wake_active(&chip->vbms_lv_wake_source) ||
(batt_temp <= chip->dt.cfg_low_temp_threshold))
soc_change = min((int)abs(chip->last_soc - soc),
time_since_last_change_sec);
else
soc_change = min((int)abs(chip->last_soc - soc),
time_since_last_change_sec
/ SOC_CHANGE_PER_SEC);
if (chip->last_soc_unbound) {
chip->last_soc_unbound = false;
} else {
/*
* if soc have not been unbound by resume,
* only change reported SoC by 1.
*/
soc_change = min(1, soc_change);
}
if (soc < chip->last_soc && soc != 0)
soc = chip->last_soc - soc_change;
if (soc > chip->last_soc && soc != 100)
soc = chip->last_soc + soc_change;
}
if (chip->last_soc != soc && !chip->last_soc_unbound)
chip->last_soc_change_sec = last_change_sec;
/*
* Check/update eoc under following condition:
* if there is change in soc:
* soc != chip->last_soc
* during bootup if soc is 100:
*/
soc = bound_soc(soc);
//当电池改变,或者在开机过程中达到100%的电量
if ((soc != chip->last_soc) || (soc == 100)) {
chip->last_soc = soc;
//在这个函数里面,如果report_soc==100的话,还是算是不充电的状态
//当上一次充电还是100,报告已经充满电了,假设有这个标志的话,qcom,use-reported-soc,会设置eoc_reported为true,这个在之后复充标志的时候有用到
check_eoc_condition(chip);
//不充电状态并且设置的复充电量高于0%,这是必备条件
if ((chip->dt.cfg_soc_resume_limit > 0) && !charging)
//里面的复充条件是
check_recharge_condition(chip);
}
pr_debug("last_soc=%d calculated_soc=%d soc=%d time_since_last_change=%d\n",
chip->last_soc, chip->calculated_soc,
soc, time_since_last_change_sec);
/*
* Backup the actual ocv (last_ocv_uv) and not the
* last_soc-interpolated ocv. This makes sure that
* the BMS algorithm always uses the correct ocv and
* can catch up on the last_soc (across reboots).
* We do not want the algorithm to be based of a wrong
* initial OCV.
*/
backup_ocv_soc(chip, chip->last_ocv_uv, chip->last_soc);
//设备树中的qcom,use-reported-soc
if (chip->reported_soc_in_use)
//设置reported_soc为100
return prepare_reported_soc(chip);
pr_debug("Reported SOC=%d\n", chip->last_soc);
return chip->last_soc;
}
2.4 复充、充电、停止充电逻辑
通过阅读设备树知道resume-soc这个节点来控制:
在probe函数中通过宏定SPMI_PROP_READ_OPTIONAL
义:
SPMI_PROP_READ_OPTIONAL(cfg_soc_resume_limit, "resume-soc", rc);
cfg_soc_resume_limit分别在以下这几个函数中使用过:
- check_recharge_condition函数,最后也是在report_vm_bms_soc函数中使用的
- report_vm_bms_soc函数:为内核线程中上报的函数,主要电池控制也在这个函数里面
- reported_soc_check_status函数
reported_soc_check_status ->
qpnp_vm_bms_ext_power_changed //这个是个对调函数,暂时没看到哪里的有调到;
2.4.1 复充模式
以下这些函数都只可能在达到100%的时候才会进入的:
check_recharge_condition
函数:
static void check_recharge_condition(struct qpnp_bms_chip *chip)
{
int rc;
union power_supply_propval ret = {0,};
int status = get_battery_status(chip);
if (chip->last_soc > chip->dt.cfg_soc_resume_limit)
return;
if (status == POWER_SUPPLY_STATUS_UNKNOWN) {
pr_debug("Unable to read battery status\n");
return;
}
/* Report recharge to charger for SOC based resume of charging */
if ((status != POWER_SUPPLY_STATUS_CHARGING) && chip->eoc_reported) {
ret.intval = POWER_SUPPLY_STATUS_CHARGING;
rc = chip->batt_psy->set_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
if (rc < 0) {
pr_err("Unable to set battery property rc=%d\n", rc);
} else {
pr_info("soc dropped below resume_soc soc=%d resume_soc=%d, restart charging\n",
chip->last_soc,
chip->dt.cfg_soc_resume_limit);
chip->eoc_reported = false;
}
}
}
如果chip->last_soc高于设置的resume-soc复冲电压的话, 那么就return出来;
如果chip->last_soc低于设置的resume-soc复冲电压的话,就设置电源的充电状态,并设置set_property给上层;
我们可以看看这个函数在哪里使用的:
在函数的report_vm_bms_soc上使用的:
if ((soc != chip->last_soc) || (soc == 100)) {
chip->last_soc = soc;
check_eoc_condition(chip);
if ((chip->dt.cfg_soc_resume_limit > 0) && !charging)
check_recharge_condition(chip);
}
当电压改变的时候,判断不在充电模式且设置的复充电容在95%;
check_eoc_condition
函数中:
static void check_eoc_condition(struct qpnp_bms_chip *chip)
{
int rc;
int status = get_battery_status(chip);
union power_supply_propval ret = {0,};
if (status == POWER_SUPPLY_STATUS_UNKNOWN) {
pr_err("Unable to read battery status\n");
return;
}
/*
* Check battery status:
* if last_soc is 100 and battery status is still charging
* reset ocv_at_100 and force reporting of eoc to charger.
*/
//检查电池状态,假设上次电池的last_soc为100,并且还在充电状态强制报告eoc到充电器上
if ((chip->last_soc == 100) &&
(status == POWER_SUPPLY_STATUS_CHARGING))
chip->ocv_at_100 = -EINVAL;
/*
* Store the OCV value at 100. If the new ocv is greater than
* ocv_at_100 (battery settles), update ocv_at_100. Else
* if the SOC drops, reset ocv_at_100.
*/
if (chip->ocv_at_100 == -EINVAL) {
//假设上次last_soc为100,报告复充条件符合,第二次达到100%进来的
if (chip->last_soc == 100) {
if (chip->dt.cfg_report_charger_eoc) {
//上报充满电的状态
rc = report_eoc(chip);
if (!rc) {
/*
* update ocv_at_100 only if EOC is
* reported successfully.
*/
chip->ocv_at_100 = chip->last_ocv_uv;
pr_debug("Battery FULL\n");
} else {
pr_err("Unable to report eoc rc=%d\n",
rc);
chip->ocv_at_100 = -EINVAL;
}
}
if (chip->dt.cfg_use_reported_soc) {
/* begin reported_soc process */
chip->reported_soc_in_use = true;
chip->charger_removed_since_full = false;
chip->charger_reinserted = false;
chip->reported_soc = 100;
pr_debug("Begin reported_soc process\n");
}
}
} else {
if (chip->last_ocv_uv >= chip->ocv_at_100) {
pr_debug("new_ocv(%d) > ocv_at_100(%d) maintaining SOC to 100\n",
chip->last_ocv_uv, chip->ocv_at_100);
chip->ocv_at_100 = chip->last_ocv_uv;
chip->last_soc = 100;
} else if (chip->last_soc != 100) {
/*
* Report that the battery is discharging.
* This gets called once when the SOC falls
* below 100.
*/
if (chip->reported_soc_in_use
&& chip->reported_soc == 100) {
pr_debug("reported_soc=100, last_soc=%d, do not send DISCHARING status\n",
chip->last_soc);
} else {
ret.intval = POWER_SUPPLY_STATUS_DISCHARGING;
chip->batt_psy->set_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
}
pr_debug("SOC dropped (%d) discarding ocv_at_100\n",
chip->last_soc);
chip->ocv_at_100 = -EINVAL;
}
}
}
设置四个标志位:
- reported_soc_in_use=true
- charger_removed_since_full=false
- charger_reinserted=false
- reported_soc=100 //这个标志位在下文的停止充电中有使用到
这四个标志位之后会在report_vm_bms_soc上的prepare_reported_soc函数上使用;
- prepare_reported_soc函数
static int prepare_reported_soc(struct qpnp_bms_chip *chip)
{
//因为刚刚标志位被设置为false
if (chip->charger_removed_since_full == false) {
/*
* charger is not removed since full,
* keep reported_soc as 100 and calculate the delta soc
* between reported_soc and last_soc
*/
chip->reported_soc = 100;
chip->reported_soc_delta = 100 - chip->last_soc;
pr_debug("Keep at reported_soc 100, reported_soc_delta=%d, last_soc=%d\n",
chip->reported_soc_delta,
chip->last_soc);
} else {
/* charger is removed since full */
if (chip->charger_reinserted) {
/*
* charger reinserted, keep the reported_soc
* until it equals to last_soc.
*/
if (chip->reported_soc == chip->last_soc) {
chip->reported_soc_in_use = false;
chip->reported_soc_high_current = false;
pr_debug("reported_soc equals to last_soc, stop reported_soc process\n");
}
chip->reported_soc_change_sec = 0;
}
}
pr_debug("Reporting reported_soc=%d, last_soc=%d\n",
chip->reported_soc, chip->last_soc);
return chip->reported_soc;
}
2.4.2 停止充电模式
停止充电模式在函数的calculate_reported_soc
函数中:
monitor_soc_work -->
calculate_reported_soc
static void calculate_reported_soc(struct qpnp_bms_chip *chip)
{
union power_supply_propval ret = {0,};
if (chip->last_soc < 0) {
pr_debug("last_soc is not ready, return\n");
return;
}
//这样就是处于充电模式
if (chip->reported_soc > chip->last_soc) {
/*send DISCHARGING status if the reported_soc drops from 100 */
//当充电到100%的时候,设置停止充电的状态,在上面设置标志位的时候使用到
if (chip->reported_soc == 100) {
ret.intval = POWER_SUPPLY_STATUS_DISCHARGING;
chip->batt_psy->set_property(chip->batt_psy,
POWER_SUPPLY_PROP_STATUS, &ret);
pr_debug("Report discharging status, reported_soc=%d, last_soc=%d\n",
chip->reported_soc, chip->last_soc);
}
/*
* reported_soc_delta is used to prevent
* the big change in last_soc,
* this is not used in high current mode
*/
if (chip->reported_soc_delta > 0)
chip->reported_soc_delta--;
if (chip->reported_soc_high_current)
chip->reported_soc--;
else
chip->reported_soc = chip->last_soc
+ chip->reported_soc_delta;
pr_debug("New reported_soc=%d, last_soc is=%d\n",
chip->reported_soc, chip->last_soc);
} else {
chip->reported_soc_in_use = false;
chip->reported_soc_high_current = false;
pr_debug("reported_soc equals last_soc,stop reported_soc process\n");
}
pr_debug("bms power_supply_changed\n");
power_supply_changed(&chip->bms_psy);
}
现在我们想一想如何保持将100%的电压一直保持到95%到复充的状态呢?有一个非常重要的标志位charger_removed_since_full
:
这个标志位是什么意思呢?字面意思就是当充电器被拔掉的时候是电量满电的;也就是说电量满电的之后(是之后),并且充电器没有拔掉的时候;看一下这个标志位是会在什么时候改变的吧:
static void reported_soc_check_status(struct qpnp_bms_chip *chip)
{
u8 present;
present = is_charger_present(chip);
pr_debug("usb_present=%d\n", present);
//当没有充电状态,并且false的状态
if (!present && !chip->charger_removed_since_full) {
chip->charger_removed_since_full = true;
pr_debug("reported_soc: charger removed since full\n");
return;
}
if (chip->reported_soc_high_current) {
pr_debug("reported_soc in high current mode, return\n");
return;
}
if ((chip->reported_soc - chip->last_soc) >
(100 - chip->dt.cfg_soc_resume_limit
+ HIGH_CURRENT_TH)) {
chip->reported_soc_high_current = true;
chip->charger_removed_since_full = true;
chip->charger_reinserted = false;
pr_debug("reported_soc enters high current mode\n");
return;
}
if (present && chip->charger_removed_since_full) {
chip->charger_reinserted = true;
pr_debug("reported_soc: charger reinserted\n");
}
if (!present && chip->charger_removed_since_full) {
chip->charger_reinserted = false;
pr_debug("reported_soc: charger removed again\n");
}
}
但这个函数也要在一定条件下才能进来,同样也需要reported_soc_in_use
标志位来使用:
if (chip->reported_soc_in_use)
reported_soc_check_status(chip);
最开始的时候reported_soc_in_use
已经是true的状态了,只有两种情况会改变它,
- 在重新插入的情况下,充完了电;
- 在
calculate_reported_soc
函数中,属于放电的状态;