Eureka 缓存结构以及服务感知优化

目录

  • Eureka-Client获取注册信息
  • Eureka-Server管理注册信息
  • 服务感知优化

果然好记性不如烂笔头,再简单的东西不记录下来总是会忘的!

本文首先会分析eureka中的缓存架构。并在此基础上优化服务之间的感知

Eureka-Client获取注册信息

eureka-client获取注册信息可分为两种,分别是全量获取和增量获取。

Eureka-Client 启动时,首先执行一次全量获取进行本地缓存注册信息,代码如下:

@Inject
    DiscoveryClient(ApplicationInfoManager applicationInfoManager, EurekaClientConfig config, AbstractDiscoveryClientOptionalArgs args,
                    Provider backupRegistryProvider) {
                    if (clientConfig.shouldFetchRegistry() && !fetchRegistry(false)) {
            fetchRegistryFromBackup();
        }
     }

项目中配置

eureka.client.fetch-registry=true

便可以调用fetchRegistry方法,从eureka-server全量获取注册信息

Eureka-Client 启动时,还会初始化一个缓存刷新定时任务

private void initScheduledTasks() {
        if (clientConfig.shouldFetchRegistry()) {
            // registry cache refresh timer
            int registryFetchIntervalSeconds = clientConfig.getRegistryFetchIntervalSeconds();
            int expBackOffBound = clientConfig.getCacheRefreshExecutorExponentialBackOffBound();
            scheduler.schedule(
                    new TimedSupervisorTask(
                            "cacheRefresh",
                            scheduler,
                            cacheRefreshExecutor,
                            registryFetchIntervalSeconds,
                            TimeUnit.SECONDS,
                            expBackOffBound,
                            new CacheRefreshThread()
                    ),
                    registryFetchIntervalSeconds, TimeUnit.SECONDS);
        }
    }

每间隔 registryFetchIntervalSeconds(默认值是30) 秒执行一次CacheRefreshThread任务。CacheRefreshThread最终还是执行了fetchRegistry方法。

private boolean fetchRegistry(boolean forceFullRegistryFetch) {
        try {
            Applications applications = getApplications();

            if (clientConfig.shouldDisableDelta()
                    || (!Strings.isNullOrEmpty(clientConfig.getRegistryRefreshSingleVipAddress()))
                    || forceFullRegistryFetch
                    || (applications == null)
                    || (applications.getRegisteredApplications().size() == 0)
                    || (applications.getVersion() == -1)) //Client application does not have latest library supporting delta
            {
                getAndStoreFullRegistry();
            } else {
                getAndUpdateDelta(applications);
            }
            applications.setAppsHashCode(applications.getReconcileHashCode());
        } catch (Throwable e) {
            logger.error(PREFIX + appPathIdentifier + " - was unable to refresh its cache! status = " + e.getMessage(), e);
            return false;
        } finally {
            if (tracer != null) {
                tracer.stop();
            }
        }
        // Notify about cache refresh before updating the instance remote status
        onCacheRefreshed();
        // Update remote status based on refreshed data held in the cache
        updateInstanceRemoteStatus();
        // registry was fetched successfully, so return true
        return true;
    }

fetchRegistry首先判断是全量获取还是增量获取,然后请求server端获取注册信息,成功后更新注册信息。再触发CacheRefreshed事件

Eureka-Server管理注册信息

客户端的请求到Server端后,通过ResponseCache返回服务信息

@GET
    public Response getContainers(@PathParam("version") String version,
                                  @HeaderParam(HEADER_ACCEPT) String acceptHeader,
                                  @HeaderParam(HEADER_ACCEPT_ENCODING) String acceptEncoding,
                                  @HeaderParam(EurekaAccept.HTTP_X_EUREKA_ACCEPT) String eurekaAccept,
                                  @Context UriInfo uriInfo,
                                  @Nullable @QueryParam("regions") String regionsStr) {

        boolean isRemoteRegionRequested = null != regionsStr && !regionsStr.isEmpty();
        String[] regions = null;
        if (!isRemoteRegionRequested) {
            EurekaMonitors.GET_ALL.increment();
        } else {
            regions = regionsStr.toLowerCase().split(",");
            Arrays.sort(regions); // So we don't have different caches for same regions queried in different order.
            EurekaMonitors.GET_ALL_WITH_REMOTE_REGIONS.increment();
        }

         // 判断是否可以访问
        if (!registry.shouldAllowAccess(isRemoteRegionRequested)) {
            return Response.status(Status.FORBIDDEN).build();
        }
        CurrentRequestVersion.set(Version.toEnum(version));
        // 返回数据格式
        KeyType keyType = Key.KeyType.JSON;
        String returnMediaType = MediaType.APPLICATION_JSON;
        if (acceptHeader == null || !acceptHeader.contains(HEADER_JSON_VALUE)) {
            keyType = Key.KeyType.XML;
            returnMediaType = MediaType.APPLICATION_XML;
        }
        // 响应缓存键( KEY )
        Key cacheKey = new Key(Key.EntityType.Application,
                ResponseCacheImpl.ALL_APPS,
                keyType, CurrentRequestVersion.get(), EurekaAccept.fromString(eurekaAccept), regions
        );

        Response response;
        if (acceptEncoding != null && acceptEncoding.contains(HEADER_GZIP_VALUE)) {
        // 根据cacheKey返回注册信息
            response = Response.ok(responseCache.getGZIP(cacheKey))
                    .header(HEADER_CONTENT_ENCODING, HEADER_GZIP_VALUE)
                    .header(HEADER_CONTENT_TYPE, returnMediaType)
                    .build();
        } else {
            response = Response.ok(responseCache.get(cacheKey))
                    .build();
        }
        return response;
    }

重点就是在responseCache中的get方法了了

String get(final Key key, boolean useReadOnlyCache) {
        Value payload = getValue(key, useReadOnlyCache);
        if (payload == null || payload.getPayload().equals(EMPTY_PAYLOAD)) {
            return null;
        } else {
            return payload.getPayload();
        }
    }
private final ConcurrentMap readOnlyCacheMap = new ConcurrentHashMap();
private final LoadingCache readWriteCacheMap;

this.readWriteCacheMap =
                CacheBuilder.newBuilder().initialCapacity(1000)
                        .expireAfterWrite(serverConfig.getResponseCacheAutoExpirationInSeconds(), TimeUnit.SECONDS)
                        .removalListener(new RemovalListener() {
                            @Override
                            public void onRemoval(RemovalNotification notification) {
                                Key removedKey = notification.getKey();
                                if (removedKey.hasRegions()) {
                                    Key cloneWithNoRegions = removedKey.cloneWithoutRegions();
                                    regionSpecificKeys.remove(cloneWithNoRegions, removedKey);
                                }
                            }
                        })
                        .build(new CacheLoader() {
                            @Override
                            public Value load(Key key) throws Exception {
                                if (key.hasRegions()) {
                                    Key cloneWithNoRegions = key.cloneWithoutRegions();
                                    regionSpecificKeys.put(cloneWithNoRegions, key);
                                }
                                Value value = generatePayload(key);
                                return value;
                            }
                        });
                        
Value getValue(final Key key, boolean useReadOnlyCache) {
        Value payload = null;
        try {
            if (useReadOnlyCache) {
            //从只读缓存中获取注册信息
                final Value currentPayload = readOnlyCacheMap.get(key);
                if (currentPayload != null) {
                    payload = currentPayload;
                } else {
                //只读缓存不存在便从读写缓存中获取信息
                    payload = readWriteCacheMap.get(key);
                    readOnlyCacheMap.put(key, payload);
                }
            } else {
                payload = readWriteCacheMap.get(key);
            }
        } catch (Throwable t) {
            logger.error("Cannot get value for key :" + key, t);
        }
        return payload;
    }    

这里采用了双层缓存的结构首先从readOnlyCacheMap读取数据,如果readOnlyCacheMap读取不到则从readWriteCacheMap读取数据。readOnlyCacheMap是个ConcurrentMap结构,而readWriteCacheMap则是一个guava cache,最大容量1000,180s后自动过期。

两个map之间的数据是如何交互的呢。这里有个定时任务每隔30秒去对比一次两个缓存中的数据,如果发现两者不一致,则用readWriteCacheMap的值覆盖readOnlyCacheMap的值

if (shouldUseReadOnlyResponseCache) {
            timer.schedule(getCacheUpdateTask(),
                    new Date(((System.currentTimeMillis() / responseCacheUpdateIntervalMs) * responseCacheUpdateIntervalMs)
                            + responseCacheUpdateIntervalMs),
                    responseCacheUpdateIntervalMs);
        }
private TimerTask getCacheUpdateTask() {
        return new TimerTask() {
            @Override
            public void run() {
                logger.debug("Updating the client cache from response cache");
                for (Key key : readOnlyCacheMap.keySet()) {
                    try {
                        CurrentRequestVersion.set(key.getVersion());
                        Value cacheValue = readWriteCacheMap.get(key);
                        Value currentCacheValue = readOnlyCacheMap.get(key);
                        //对比两个缓存的值
                        if (cacheValue != currentCacheValue) {
                            readOnlyCacheMap.put(key, cacheValue);
                        }
                    } catch (Throwable th) {
                        logger.error("Error while updating the client cache from response cache", th);
                    }
                }
            }
        };
    }

现在我们知道了readOnlyCacheMap中的数据是从readWriteCacheMap获得的,并且每隔30s同步一次。那么还有一个问题就是readWriteCacheMap中的数据是从哪里来的呢?

在readWriteCacheMap变量上find usages无法找到明确的信息,便在build方法中添加断点

this.readWriteCacheMap =
                CacheBuilder.newBuilder().initialCapacity(1000)
                        .expireAfterWrite(serverConfig.getResponseCacheAutoExpirationInSeconds(), TimeUnit.SECONDS)
                        .removalListener(new RemovalListener() {
                            @Override
                            public void onRemoval(RemovalNotification notification) {
                                Key removedKey = notification.getKey();
                                if (removedKey.hasRegions()) {
                                    Key cloneWithNoRegions = removedKey.cloneWithoutRegions();
                                    regionSpecificKeys.remove(cloneWithNoRegions, removedKey);
                                }
                            }
                        })
                        .build(new CacheLoader() {
                            @Override
                            public Value load(Key key) throws Exception {
                                if (key.hasRegions()) {
                                    Key cloneWithNoRegions = key.cloneWithoutRegions();
                                    regionSpecificKeys.put(cloneWithNoRegions, key);
                                }
                                //添加断点
                                Value value = generatePayload(key);
                                return value;
                            }
                        });

最终发现readWriteCacheMap的值是在同步任务中添加的

private TimerTask getCacheUpdateTask() {
        return new TimerTask() {
            @Override
            public void run() {
                logger.debug("Updating the client cache from response cache");
                for (Key key : readOnlyCacheMap.keySet()) {
                    try {
                        CurrentRequestVersion.set(key.getVersion());
                        Value cacheValue = readWriteCacheMap.get(key);
                        //触发load方法加载Value
                        Value currentCacheValue = readOnlyCacheMap.get(key);
                        //对比两个缓存的值
                        if (cacheValue != currentCacheValue) {
                            readOnlyCacheMap.put(key, cacheValue);
                        }
                    } catch (Throwable th) {
                        logger.error("Error while updating the client cache from response cache", th);
                    }
                }
            }
        };
    }

好,触发时机我们现在也知道了,我们再看下数据时怎么产生的。大致我们可以了解到readWriteCacheMap中的value是通过AbstractInstanceRegistry中的registry变量得到的

private final AbstractInstanceRegistry registry;

private Value generatePayload(Key key) {
        Stopwatch tracer = null;
        try {
            String payload;
            switch (key.getEntityType()) {
                case Application:
                    boolean isRemoteRegionRequested = key.hasRegions();

                    if (ALL_APPS.equals(key.getName())) {
                        if (isRemoteRegionRequested) {
                            tracer = serializeAllAppsWithRemoteRegionTimer.start();
                            payload = getPayLoad(key, registry.getApplicationsFromMultipleRegions(key.getRegions()));
                        } else {
                            tracer = serializeAllAppsTimer.start();
                            payload = getPayLoad(key, registry.getApplications());
                        }
                    } else if (ALL_APPS_DELTA.equals(key.getName())) {
                        if (isRemoteRegionRequested) {
                            tracer = serializeDeltaAppsWithRemoteRegionTimer.start();
                            versionDeltaWithRegions.incrementAndGet();
                            versionDeltaWithRegionsLegacy.incrementAndGet();
                            payload = getPayLoad(key,
                                    registry.getApplicationDeltasFromMultipleRegions(key.getRegions()));
                        } else {
                            tracer = serializeDeltaAppsTimer.start();
                            versionDelta.incrementAndGet();
                            versionDeltaLegacy.incrementAndGet();
                            payload = getPayLoad(key, registry.getApplicationDeltas());
                        }
                    } else {
                        tracer = serializeOneApptimer.start();
                        payload = getPayLoad(key, registry.getApplication(key.getName()));
                    }
                    break;
                case VIP:
                case SVIP:
                    tracer = serializeViptimer.start();
                    payload = getPayLoad(key, getApplicationsForVip(key, registry));
                    break;
                default:
                    logger.error("Unidentified entity type: " + key.getEntityType() + " found in the cache key.");
                    payload = "";
                    break;
            }
            return new Value(payload);
        } finally {
            if (tracer != null) {
                tracer.stop();
            }
        }
    }

AbstractInstanceRegistry中的registry是一个多层缓存结构。client注册,续约,下线的数据都是通过registry进行保存

private final ConcurrentHashMap>> registry
            = new ConcurrentHashMap>>();

registry有一个定时任务每隔60s去剔除过期的数据

evictionTimer.schedule(evictionTaskRef.get(),
                //60*1000
                serverConfig.getEvictionIntervalTimerInMs(),
                serverConfig.getEvictionIntervalTimerInMs());
                
@Override
        public void run() {
            try {
                long compensationTimeMs = getCompensationTimeMs();
                logger.info("Running the evict task with compensationTime {}ms", compensationTimeMs);
                evict(compensationTimeMs);
            } catch (Throwable e) {
                logger.error("Could not run the evict task", e);
            }
        }                

总结下

eureka客户端注册,续约,下线都会请求到server端,server端把数据保存在registry这个双层map中。每隔60s会有定时任务去检查registry中保存的租约是否已经过期(租约有效期是90s),然后每隔30s会有定时任务更新readWriteCacheMap的值以及同步readWriteCacheMap和readOnlyCacheMap的值

服务感知优化

基于上述流程,想象下,假如一个服务异常下线server端没有接受到下线请求,那么会有以下情况

  • 0s 时服务未通知 Eureka Client 直接下线;
  • 29s 时第一次过期检查 evict 未超过 90s;
  • 89s 时第二次过期检查 evict 未超过 90s;
  • 149s 时第三次过期检查 evict 未续约时间超过了 90s,故将该服务实例从 registry 中删除;
  • 179s 时定时任务更新readWriteCacheMap以及从 readWriteCacheMap 更新至 readOnlyCacheMap;
  • 209s 时 Eureka Client 从 Eureka Server 的 readOnlyCacheMap 更新;
  • 239s 时 Ribbon 从 Eureka Client 更新。

(ribbon同样也有缓存更新策略,默认30s)

因此,极限情况下服务消费者最长感知时间将无限趋近 240s。

怎么优化呢

server端:

减少registry服务剔除任务时间
减少两个缓存同步定时任务时间
小型系统可以直接去掉readOnlyCacheMap

服务提供端

减少心跳时间
减少租约过期时间

服务消费端

减少ribbon更新时间
减少fetchRegist时间

EurekaServer修改如下配置:

#eureka server刷新readCacheMap的时间,注意,client读取的是readCacheMap,这个时间决定了多久会把readWriteCacheMap的缓存更新到readCacheMap上
#默认30s
eureka.server.responseCacheUpdateIntervalMs=3000
#eureka server缓存readWriteCacheMap失效时间,这个只有在这个时间过去后缓存才会失效,失效前不会更新,过期后从registry重新读取注册服务信息,registry是一个ConcurrentHashMap。
#由于启用了evict其实就用不太上改这个配置了
#默认180s
eureka.server.responseCacheAutoExpirationInSeconds=180

#启用主动失效,并且每次主动失效检测间隔为3s

Eureka Server会定时(间隔值是eureka.server.eviction-interval-timer-in-ms,默认值为0,默认情况不删除实例)进行检查,
如果发现实例在在一定时间(此值由客户端设置的eureka.instance.lease-expiration-duration-in-seconds定义,默认值为90s)
内没有收到心跳,则会注销此实例。
eureka.server.eviction-interval-timer-in-ms=3000

Eureka服务提供方修改如下配置:

#服务过期时间配置,超过这个时间没有接收到心跳EurekaServer就会将这个实例剔除
#注意,EurekaServer一定要设置eureka.server.eviction-interval-timer-in-ms否则这个配置无效,这个配置一般为服务刷新时间配置的三倍
#默认90s
eureka.instance.lease-expiration-duration-in-seconds=15
#服务刷新时间配置,每隔这个时间会主动心跳一次
#默认30s
eureka.instance.lease-renewal-interval-in-seconds=5

Eureka服务调用方修改如下配置:

#eureka client刷新本地缓存时间
#默认30s
eureka.client.registryFetchIntervalSeconds=5
#eureka客户端ribbon刷新时间
#默认30s
ribbon.ServerListRefreshInterval=5000

你可能感兴趣的:(Eureka 缓存结构以及服务感知优化)