1、主机规划
序号 | 主机名 | IP地址 | 角色 |
1 | nn-1 | 192.168.9.21 | NameNode、mr-jobhistory、zookeeper、JournalNode |
2 | nn-2 | 192.168.9.22 | Secondary NameNode、JournalNode |
3 | dn-1 | 192.168.9.23 | DataNode、JournalNode、zookeeper、ResourceManager、NodeManager |
4 | dn-2 | 192.168.9.24 | DataNode、zookeeper、ResourceManager、NodeManager |
5 | dn-3 | 192.168.9.25 | DataNode、NodeManager |
集群说明:
(1)、对于集群规模小于7台和以下的, 可以不做NameNode HA。
(2)、HA的集群,
JournalNode节点要在3个以上, 建议设置成5个节点。
JournalNode是轻量级服务,
为了本地性, 其中两个
JournalNode和两台NameNode节点复用。其他
JournalNode和分散在其他节点上。
(
3
)
、
HA的集群,
zookeeper
节点要在3个以上, 建议设置成5个或者7个节点。
zookeeper可以和DataNode节点复用。
(4
)
、
HA的集群,
ResourceManager建议单独一个节点。对于较大规模的集群,且有空闲的主机资源, 可以考虑设置ResourceManager的HA。
2、主机环境设置
2.1 配置JDK
卸载OpenJDK:
--查看java版本
[root@dtgr ~]# java -version
java version "1.7.0_45"
OpenJDK Runtime Environment (rhel-2.4.3.3.el6-x86_64 u45-b15)
OpenJDK 64-Bit Server VM (build 24.45-b08, mixed mode)
--查看安装源
[root@dtgr ~]# rpm -qa | grep java
java-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86_64
-- 卸载[root@dtgr ~]# rpm -e --nodeps java-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86_64
- --验证是否卸载成功
[root@dtgr ~]# rpm -qa | grep java
[root@dtgr ~]# java -version
-bash: /usr/bin/java: 没有那个文件或目录
安装jdk:
-- 下载并解压java源码包
[root@dtgr java]# mkdir /usr/local/java
[root@dtgr java]# mv jdk-7u79-linux-x64.tar.gz /usr/local/java
[root@dtgr java]# cd /usr/local/java
[root@dtgr java]# tar xvf jdk-7u79-linux-x64.tar.gz
[root@dtgr java]# ls
jdk1.7.0_79 jdk-7u79-linux-x64.tar.gz
[root@dtgr java]#
--- 添加环境变量
[root@dtgr java]# vim /etc/profile
[root@dtgr java]# tail /etc/profile
export JAVA_HOME=/usr/local/java/jdk1.7.0_79
export JRE_HOME=/usr/local/java/jdk1.7.0_79/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib:$CLASSPATH
export PATH=$JAVA_HOME/bin:$PATH
-- 生效环境变量
[root@dtgr ~]# source /etc/profile
-- 验证
[root@dtgr ~]# java -version
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)
[root@dtgr ~]# javac -version
javac 1.7.0_79
2.2 修改主机名和配置主机名解析
在所有节点按照规划修改主机名, 并将主机名加入/etc/hosts文件。
修改主机名:
[root@dn-3 ~]# cat /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=dn-3
[root@dn-3 ~]# hostname dn-3
配置/etc/hosts, 并分发到所有节点:
[root@dn-3 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.9.21 nn-1
192.168.9.22 nn-2
192.168.9.23 dn-1
192.168.9.24 dn-2
192.168.9.25 dn-3
2.3 新建hadoop账户
用户和组均为hadoop, 密码为hadoop, home目录为/hadoop。
[root@dn-3 ~]# useradd -d /hadoop hadoop
2.4 配置ntp时钟同步
将nn-1主机作为时钟源)
#vi /etc/ntp.conf
#server 0.centos.pool.ntp.org
#server 1.centos.pool.ntp.org
#server 2.centos.pool.ntp.org
server nn-1
配置ntp服务自启动
#chkconfig ntpd on
启动ntp服务
#service ntpd start
2.5 关闭防火墙iptables和selinux
(1)、关闭iptables
[root@dn-3 ~]# service iptables stop
[root@dn-3 ~]# chkconfig iptables off
[root@dn-3 ~]# chkconfig --list | grep iptables
iptables 0:关闭 1:关闭 2:关闭 3:关闭 4:关闭 5:关闭 6:关闭
[root@dn-3 ~]#
(2)、关闭selinux
[root@dn-3 ~]# setenforce 0
setenforce: SELinux is disabled
[root@dn-3 ~]# vim /etc/sysconfig/selinux
SELINUX=disabled
2.6 设置ssh无密码登陆
(1)、在所有节点生成密钥
所有节点, 切换到hadoop用户下,
生成密钥,一路回车:
[hadoop@nn-1 ~]$ ssh-keygen -t rsa
(2)、在nn-1上面,将公钥复制到文件authorized_keys中:
命令:$ ssh 主机名 'cat ./.ssh/id_rsa.pub' >> authorized_keys
将上面的命令的主机名替换成实际的主机名, 在nn-1上面将所有的主机都执行一次,包括自己, 如下示例:
[hadoop@nn-1 ~]$ ssh nn-1 'cat ./.ssh/id_rsa.pub' >> authorized_keys
hadoop@nn-1's password:
(3)、设置权限
[hadoop@nn-1 .ssh]$ chmod 644 authorized_keys
(4)、将authorized_keys分发到所有节点: $HOME/.ssh/ 。
如下示例:
[hadoop@nn-1 .ssh]$ scp authorized_keys hadoop@nn-2:/hadoop/.ssh/
3、安装配置Hadoop
说明: 先在nn-1上面修改配置, 配置完毕批量分发到其他节点。
3.1 上传hadoop、zookeeper安装包
复制安装包到/hadoop目录下。
解压安装包: [hadoop@nn-1 ~]$ tar -xzvf hadoop2-js-0121.tar.gz
3.2 修改hadoop-env.sh
export JAVA_HOME=/usr/local/java/jdk1.7.0_79
export HADOOP_HEAPSIZE=2000
export HADOOP_NAMENODE_INIT_HEAPSIZE=10000
export HADOOP_OPTS="-server $HADOOP_OPTS -Djava.net.preferIPv4Stack=true"
export HADOOP_NAMENODE_OPTS="-Xmx15000m -Xms15000m -Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger
=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
参数说明参考: http://blog.csdn.net/fenglibing/article/details/31051225
3.3 修改core-site.xml
fs.defaultFS
hdfs://dpi
io.file.buffer.size
131072
hadoop.tmp.dir
file:/hadoop/hdfs/temp
Abase for other temporary directories.
hadoop.proxyuser.hduser.hosts
*
hadoop.proxyuser.hduser.groups
*
ha.zookeeper.quorum
dn-1:2181,dn-2:2181,dn-3:2181
3.4 修改hdfs-site.xml
dfs.namenode.secondary.http-address
nn-1:9001
dfs.namenode.name.dir
file:/hadoop/hdfs/name
dfs.datanode.data.dir
file:/hadoop/hdfs/data,file:/hadoopdata/hdfs/data
dfs.replication
3
dfs.webhdfs.enabled
true
dfs.nameservices
dpi
dfs.ha.namenodes.dpi
nn-1,nn-2
dfs.namenode.rpc-address.dpi.nn-1
nn-1:9000
dfs.namenode.http-address.dpi.nn-1
nn-1:50070
dfs.namenode.rpc-address.dpi.nn-2
nn-2:9000
dfs.namenode.http-address.dpi.nn-2
nn-2:50070
dfs.namenode.servicerpc-address.dpi.nn-1
nn-1:53310
dfs.namenode.servicerpc-address.dpi.nn-2
nn-2:53310
dfs.ha.automatic-failover.enabled
true
dfs.namenode.shared.edits.dir
qjournal://nn-1:8485;nn-2:8485;dn-1:8485/dpi
dfs.client.failover.proxy.provider.dpi
org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider
dfs.journalnode.edits.dir
/hadoop/hdfs/journal
dfs.ha.fencing.methods
sshfence
dfs.ha.fencing.ssh.private-key-files
/hadoop/.ssh/id_rsa
参数说明参考: http://www.aboutyun.com/thread-10572-1-1.html
新建配置文件中的目录:
mkdir -p /hadoop/hdfs/name
mkdir -p /hadoop/hdfs/data
mkdir -p /hadoop/hdfs/temp
mkdir -p /hadoop/hdfs/journal
授权:chmod 755 /hadoop/hdfs
mkdir -p /hadoopdata/hdfs/data
chmod 755 /hadoopdata/hdfs
属主和属组修改为:hadoop:hadoop
3.5 修改mapred-site.xml
mapreduce.framework.name
yarn
mapreduce.jobhistory.address
nn-1:10020
mapreduce.jobhistory.webapp.address
nn-1:19888
3.6 修改yarn-site.xml
启用yarn ha功能, 根据规划, dn-1和dn-2为ResourceManager节点
yarn.nodemanager.aux-services
mapreduce_shuffle
yarn.nodemanager.aux-services.mapreduce.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler
yarn.resourcemanager.ha.enabled
true
yarn.resourcemanager.ha.rm-ids
rm1,rm2
yarn.resourcemanager.hostname.rm1
dn-1
yarn.resourcemanager.hostname.rm2
dn-2
yarn.resourcemanager.recovery.enabled
true
yarn.resourcemanager.store.class
org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
yarn.resourcemanager.zk-address
dn-1:2181,dn-2:2181,dn-3:2181
For multiple zk services, separate them with comma
yarn.resourcemanager.cluster-id
yarn-ha
3.7 修改slaves
将所有的DataNode节点加入到slaves文件中:
dn-1
dn-2
dn-3
3.8 修改yarn-env.sh
# some Java parameters
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/
if [ "$JAVA_HOME" != "" ]; then
#echo "run java in $JAVA_HOME"
JAVA_HOME=/usr/local/java/jdk1.7.0_79
fi
JAVA_HEAP_MAX=-Xmx15000m
YARN_HEAPSIZE=15000
export YARN_RESOURCEMANAGER_HEAPSIZE=5000
export YARN_TIMELINESERVER_HEAPSIZE=10000
export YARN_NODEMANAGER_HEAPSIZE=10000
3.9 分发配置好的hadoop目录到所有节点
[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@nn-2:/hadoop
[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-1:/hadoop
[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-2:/hadoop
[hadoop@nn-1 ~]$ scp -rp hadoop hadoop@dn-3:/hadoop
4 安装配置zookeeper
切换到hadoop目录下面, 根据规划, 三台zookeeper节点为:nn-1, dn-1, dn-2。
先在nn-1节点配置zookeeper, 然后分发至三个zookeeper节点:
4.1 在nn-1上传并解压zookeeper
4.2 修改配置文件/hadoop/zookeeper/conf/zoo.cfg
dataDir=/hadoop/zookeeper/data/
dataLogDir=/hadoop/zookeeper/log/
# the port at which the clients will connect
clientPort=2181
server.1=nn-1:2887:3887
server.2=dn-1:2888:3888
server.3=dn-2:2889:3889
4.3 从nn-1分发配置的zookeeper目录到其他节点
[hadoop@nn-1 ~]$ scp -rp zookeeper hadoop@dn-1:/hadoop
[hadoop@nn-1 ~]$ scp -rp zookeeper hadoop@dn-2:/hadoop
4.4 在所有zk节点创建目录
[hadoop@dn-1 ~]$ mkdir /hadoop/zookeeper/data/
[hadoop@dn-1 ~]$ mkdir /hadoop/zookeeper/log/
4.5 修改myid
在所有zk节点, 切换到目录/hadoop/zookeeper/data,创建myid文件:
注意:myid文件的内容为zoo.cfg文件中配置的server.后面的数字(即nn-1为1,dn-1为2,dn-2为3)。
在nn-1节点的myid内容为:
[hadoop@nn-1 data]$ echo 1 > /hadoop/zookeeper/data/myid
其他zk节点也安要求创建myid文件。
4.6 设置环境变量
$ echo "export ZOOKEEPER_HOME=/hadoop/zookeeper" >> $HOME/.bash_profile
$ echo "export PATH=$ZOOKEEPER_HOME/bin:\$PATH" >> $HOME/.bash_profile
$ source $HOME/.bash_profile
5 集群启动
5.1 启动zookeeper
根据规划, zk的节点为nn-1、dn-1和dn-2, 在这三台节点分别启动zk:
启动命令:
[hadoop@nn-1 ~]$ /hadoop/zookeeper/bin/zkServer.sh start
JMX enabled by default
Using config: /hadoop/zookeeper/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
查看进程, 可以看到QuorumPeerMain:
[hadoop@nn-1 ~]$ jps
9382 QuorumPeerMain
9407 Jps
查看状态, 可以看到Mode: follower, 说明这是zk的从节点:
[hadoop@nn-1 ~]$ /hadoop/zookeeper/bin/zkServer.sh status
JMX enabled by default
Using config: /hadoop/zookeeper/bin/../conf/zoo.cfg
Mode: follower
查看状态, 可以看到Mode: leader
, 说明这是zk的leader节点:
[hadoop@dn-1 data]$ /hadoop/zookeeper/bin/zkServer.sh status
JMX enabled by default
Using config: /hadoop/zookeeper/bin/../conf/zoo.cfg
Mode: leader
5.2 格式化zookeeper集群(只做一次)(机器nn-1上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/bin/hdfs zkfc -formatZK
中间有个交互的步骤, 输入Y:
进入zk, 查看是否创建成功:
5.3 启动zkfc(机器nn-1,nn-2上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start zkfc
starting zkfc, logging to /hadoop/hadoop/logs/hadoop-hadoop-zkfc-nn-1.out
使用jps, 可以看到进程DFSZKFailoverController:
[hadoop@nn-1 ~]$ jps
9681 Jps
9638 DFSZKFailoverController
9382 QuorumPeerMain
5.4 启动journalnode
根据规划, 启动journalnode节点为nn-1、nn-2和dn-1, 在这三个节点分别使用如下的命令启动服务:
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start journalnode
starting journalnode, logging to /hadoop/hadoop/logs/hadoop-hadoop-journalnode-nn-1.out
使用jps命令可以看到进程JournalNode:
[hadoop@nn-1 ~]$ jps
9714 JournalNode
9638 DFSZKFailoverController
9382 QuorumPeerMain
9762 Jps
5.5 格式化namenode(机器nn-1上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/bin/hadoop namenode -format
查看日志信息:
5.6 启动namenode(机器nn-1上执行)
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-1.out
使用jps命令可以看到进程NameNode:
[hadoop@nn-1 ~]$ jps
9714 JournalNode
9638 DFSZKFailoverController
9382 QuorumPeerMain
10157 NameNode
10269 Jps
5.7 格式化secondnamnode(机器nn-2上执行)
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs namenode -bootstrapStandby
部分日志如下:
5.8 启动namenode(机器nn-2上执行)
[hadoop@nn-2 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-2.out
使用jps命令可以看到进程NameNode:
[hadoop@nn-2 ~]$ jps
53990 NameNode
54083 Jps
53824 JournalNode
53708 DFSZKFailoverController
5.9 启动datanode(机器dn-1到dn-3上执行)
[hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/hadoop-daemon.sh start datanode
使用jps可以看到DataNode进程:
[hadoop@dn-1 temp]$ jps
57007 Jps
56927 DataNode
56223 QuorumPeerMain
5.10 启动resourcemanager
根据规划,resourcemanager做了HA, 服务在节点dn-1和dn-2上面, 在dn-1和dn-2上面启动resourcemanager:
[hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /hadoop/hadoop/logs/yarn-hadoop-resourcemanager-dn-1.out
使用jps, 可以看到进程ResourceManager:
[hadoop@dn-1 ~]$ jps
57173 QuorumPeerMain
58317 Jps
57283 JournalNode
58270 ResourceManager
58149 DataNode
5.11 启动jobhistory
根据规划, jobhistory服务在nn-1上面, 使用如下命令启动:
[hadoop@nn-1 ~]$ /hadoop/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /hadoop/hadoop/logs/mapred-hadoop-historyserver-nn-1.out
使用jps, 可以看到进程JobHistoryServer:
[hadoop@nn-1 ~]$ jps
11210 JobHistoryServer
9714 JournalNode
9638 DFSZKFailoverController
9382 QuorumPeerMain
11039 NameNode
11303 Jps
5.12 启动NodeManager
根据规划, dn-1、dn-2和dn-3是nodemanager, 在这三个节点启动NodeManager:
[hadoop@dn-1 ~]$ /hadoop/hadoop/sbin/yarn-daemon.sh start nodemanager
starting nodemanager, logging to /hadoop/hadoop/logs/yarn-hadoop-nodemanager-dn-1.out
使用jps可以看到进程NodeManager:
[hadoop@dn-1 ~]$ jps
58559 NodeManager
57173 QuorumPeerMain
58668 Jps
57283 JournalNode
58270 ResourceManager
58149 DataNode
6、安装后查看和验证
6.1 HDFS相关操作命令
查看NameNode状态的命令
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -getServiceState nn-1
手工切换,将active的NameNode从nn-1切换到nn-2 。
NameNode健康检查:
查看所有的DataNode列表:
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report | more
查看正常DataNode列表:
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report -live
17/03/01 22:49:43 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Configured Capacity: 224954695680 (209.51 GB)
Present Capacity: 180557139968 (168.16 GB)
DFS Remaining: 179963428864 (167.60 GB)
DFS Used: 593711104 (566.21 MB)
DFS Used%: 0.33%
Under replicated blocks: 2
Blocks with corrupt replicas: 0
Missing blocks: 0
-------------------------------------------------
Live datanodes (3):
Name: 192.168.9.23:50010 (dn-1)
Hostname: dn-1
Rack: /rack2
Decommission Status : Normal
Configured Capacity: 74984898560 (69.84 GB)
DFS Used: 197902336 (188.73 MB)
Non DFS Used: 14869356544 (13.85 GB)
DFS Remaining: 59917639680 (55.80 GB)
DFS Used%: 0.26%
DFS Remaining%: 79.91%
Configured Cache Capacity: 0 (0 B)
Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Xceivers: 1
Last contact: Wed Mar 01 22:49:42 CST 2017
查看异常DataNode列表:
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs dfsadmin -report -dead
获取指定DataNode信息(运行时间及版本等):
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-2
17/03/01 22:55:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[hadoop@nn-2 ~]$ /hadoop/hadoop/bin/hdfs haadmin -checkHealth nn-1
17/03/01 22:55:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
6.2 YARN相关的命令
查看resourceManager状态的命令:
[hadoop@dn-1 hadoop]$ yarn rmadmin -getServiceState rm1
- active
[hadoop@dn-1 hadoop]$ yarn rmadmin -getServiceState rm2
- standby
查看所有的yarn节点:
[hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -all -list
17/03/01 23:06:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Total Nodes:3
Node-Id Node-State Node-Http-Address Number-of-Running-Containers
dn-2:55506 RUNNING dn-2:8042 0
dn-1:56447 RUNNING dn-1:8042 0
dn-3:37533 RUNNING dn-3:8042 0
查看正常的yarn节点:
[hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -list
17/03/01 23:07:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Total Nodes:3
Node-Id Node-State Node-Http-Address Number-of-Running-Containers
dn-2:55506 RUNNING dn-2:8042 0
dn-1:56447 RUNNING dn-1:8042 0
dn-3:37533 RUNNING dn-3:8042 0
查看指定节点的信息:
/hadoop/hadoop/bin/yarn node -status
[hadoop@dn-1 hadoop]$ /hadoop/hadoop/bin/yarn node -status dn-2:55506
17/03/01 23:08:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Node Report :
Node-Id : dn-2:55506
Rack : /default-rack
Node-State : RUNNING
Node-Http-Address : dn-2:8042
Last-Health-Update : 星期三 01/三月/17 11:06:21:373CST
Health-Report :
Containers : 0
Memory-Used : 0MB
Memory-Capacity : 8192MB
CPU-Used : 0 vcores
CPU-Capacity : 8 vcores
Node-Labels :
查看当前运行的MapReduce任务:
[hadoop@dn-2 ~]$ /hadoop/hadoop/bin/yarn application -list
17/03/01 23:10:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Total number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED, RUNNING]):1
Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URL
application_1488375590901_0004 QuasiMonteCarlo MAPREDUCE hadoop default RUNNING UNDEFINED
6.3 使用自带的例子测试
[hadoop@dn-1 ~]$ cd hadoop/
[hadoop@dn-1 hadoop]$
[hadoop@dn-1 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200
[hadoop@dn-1 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200
Number of Maps = 2
Samples per Map = 200
17/02/28 01:51:12 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
17/02/28 01:51:15 INFO input.FileInputFormat: Total input paths to process : 2
17/02/28 01:51:15 INFO mapreduce.JobSubmitter: number of splits:2
17/02/28 01:51:15 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488216892564_0001
17/02/28 01:51:16 INFO impl.YarnClientImpl: Submitted application application_1488216892564_0001
17/02/28 01:51:16 INFO mapreduce.Job: The url to track the job: http://dn-1:8088/proxy/application_1488216892564_0001/
17/02/28 01:51:16 INFO mapreduce.Job: Running job: job_1488216892564_0001
17/02/28 01:51:24 INFO mapreduce.Job: Job job_1488216892564_0001 running in uber mode : false
17/02/28 01:51:24 INFO mapreduce.Job: map 0% reduce 0%
17/02/28 01:51:38 INFO mapreduce.Job: map 100% reduce 0%
17/02/28 01:51:49 INFO mapreduce.Job: map 100% reduce 100%
17/02/28 01:51:49 INFO mapreduce.Job: Job job_1488216892564_0001 completed successfully
17/02/28 01:51:50 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=50
FILE: Number of bytes written=326922
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=510
HDFS: Number of bytes written=215
HDFS: Number of read operations=11
HDFS: Number of large read operations=0
HDFS: Number of write operations=3
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=25604
Total time spent by all reduces in occupied slots (ms)=7267
Total time spent by all map tasks (ms)=25604
Total time spent by all reduce tasks (ms)=7267
Total vcore-seconds taken by all map tasks=25604
Total vcore-seconds taken by all reduce tasks=7267
Total megabyte-seconds taken by all map tasks=26218496
Total megabyte-seconds taken by all reduce tasks=7441408
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=36
Map output materialized bytes=56
Input split bytes=274
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=56
Reduce input records=4
Reduce output records=0
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=419
CPU time spent (ms)=6940
Physical memory (bytes) snapshot=525877248
Virtual memory (bytes) snapshot=2535231488
Total committed heap usage (bytes)=260186112
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=236
File Output Format Counters
Bytes Written=97
Job Finished in 35.466 seconds
Estimated value of Pi is 3.17000000000000000000
6.4 查看NameNode
链接分别为:
http://192.168.9.21:50070/
http://192.168.9.22:50070/
192.168.9.21和
192.168.9.22分别为NameNode和Secondary NameNode的地址。
6.5 查看NameNode 的HA切换是否正常
将nn-1上状态为active的NameNode进程kill, 查看nn-2上的NameNode能否从standby切换为active:
切换成功: http://192.168.9.22:50070/
6.6 查看RM页面
http://192.168.9.23:8088/cluster/cluster
http://192.168.9.24:8088/cluster/cluster
查看节点信息, 192.168.9.23为Resource服务所在的active节点。
运行测试任务, 查看
YARN HA能否
自动切换:
[hadoop@dn-2 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200
运行到中间的时候, 将rm1上的rm给kill掉, 查看切换是否正常:
查看standby的HA state变成了active:
查看下面的日志, 程序运行期间由于rm1被kill, 程序报错, 然后Trying to fail over immediately, 最终程序运行成功。
[hadoop@dn-2 hadoop]$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar pi 2 200
Number of Maps = 2
Samples per Map = 200
17/02/28 02:11:10 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
17/02/28 02:11:12 INFO input.FileInputFormat: Total input paths to process : 2
17/02/28 02:11:12 INFO mapreduce.JobSubmitter: number of splits:2
17/02/28 02:11:13 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1488216892564_0002
17/02/28 02:11:13 INFO impl.YarnClientImpl: Submitted application application_1488216892564_0002
17/02/28 02:11:13 INFO mapreduce.Job: The url to track the job: http://dn-1:8088/proxy/application_1488216892564_0002/
17/02/28 02:11:13 INFO mapreduce.Job: Running job: job_1488216892564_0002
17/02/28 02:11:18 INFO retry.RetryInvocationHandler: Exception while invoking getApplicationReport of class ApplicationClientProtocolPBClientImpl over rm1. Trying to fail over immediately.
java.io.EOFException: End of File Exception between local host is: "dn-2/192.168.9.24"; destination host is: "dn-1":8032; : java.io.EOFException; For more details see: http://wiki.apache.org/hadoop/EOFException
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:791)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:764)
at org.apache.hadoop.ipc.Client.call(Client.java:1472)
at org.apache.hadoop.ipc.Client.call(Client.java:1399)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:232)
at com.sun.proxy.$Proxy14.getApplicationReport(Unknown Source)
at org.apache.hadoop.yarn.api.impl.pb.client.ApplicationClientProtocolPBClientImpl.getApplicationReport(ApplicationClientProtocolPBClientImpl.java:187)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy15.getApplicationReport(Unknown Source)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.getApplicationReport(YarnClientImpl.java:399)
at org.apache.hadoop.mapred.ResourceMgrDelegate.getApplicationReport(ResourceMgrDelegate.java:302)
at org.apache.hadoop.mapred.ClientServiceDelegate.getProxy(ClientServiceDelegate.java:153)
at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:322)
at org.apache.hadoop.mapred.ClientServiceDelegate.getJobStatus(ClientServiceDelegate.java:422)
at org.apache.hadoop.mapred.YARNRunner.getJobStatus(YARNRunner.java:575)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:325)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:322)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
at org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:322)
at org.apache.hadoop.mapreduce.Job.isComplete(Job.java:610)
at org.apache.hadoop.mapreduce.Job.monitorAndPrintJob(Job.java:1355)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1317)
at org.apache.hadoop.examples.QuasiMonteCarlo.estimatePi(QuasiMonteCarlo.java:306)
at org.apache.hadoop.examples.QuasiMonteCarlo.run(QuasiMonteCarlo.java:354)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.hadoop.examples.QuasiMonteCarlo.main(QuasiMonteCarlo.java:363)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:71)
at org.apache.hadoop.util.ProgramDriver.run(ProgramDriver.java:144)
at org.apache.hadoop.examples.ExampleDriver.main(ExampleDriver.java:74)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.io.EOFException
at java.io.DataInputStream.readInt(DataInputStream.java:392)
at org.apache.hadoop.ipc.Client$Connection.receiveRpcResponse(Client.java:1071)
at org.apache.hadoop.ipc.Client$Connection.run(Client.java:966)
17/02/28 02:11:18 INFO client.ConfiguredRMFailoverProxyProvider: Failing over to rm2
17/02/28 02:11:18 INFO retry.RetryInvocationHandler: Exception while invoking getApplicationReport of class ApplicationClientProtocolPBClientImpl over rm2 after 1 fail over attempts. Trying to fail over after sleeping for 40859ms.
java.net.ConnectException: Call From dn-2/192.168.9.24 to dn-2:8032 failed on connection exception: java.net.ConnectException: 拒绝连接; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:791)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:731)
at org.apache.hadoop.ipc.Client.call(Client.java:1472)
at org.apache.hadoop.ipc.Client.call(Client.java:1399)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:232)
at com.sun.proxy.$Proxy14.getApplicationReport(Unknown Source)
at org.apache.hadoop.yarn.api.impl.pb.client.ApplicationClientProtocolPBClientImpl.getApplicationReport(ApplicationClientProtocolPBClientImpl.java:187)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy15.getApplicationReport(Unknown Source)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.getApplicationReport(YarnClientImpl.java:399)
at org.apache.hadoop.mapred.ResourceMgrDelegate.getApplicationReport(ResourceMgrDelegate.java:302)
at org.apache.hadoop.mapred.ClientServiceDelegate.getProxy(ClientServiceDelegate.java:153)
at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:322)
at org.apache.hadoop.mapred.ClientServiceDelegate.getJobStatus(ClientServiceDelegate.java:422)
at org.apache.hadoop.mapred.YARNRunner.getJobStatus(YARNRunner.java:575)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:325)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:322)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
at org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:322)
at org.apache.hadoop.mapreduce.Job.isComplete(Job.java:610)
at org.apache.hadoop.mapreduce.Job.monitorAndPrintJob(Job.java:1355)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1317)
at org.apache.hadoop.examples.QuasiMonteCarlo.estimatePi(QuasiMonteCarlo.java:306)
at org.apache.hadoop.examples.QuasiMonteCarlo.run(QuasiMonteCarlo.java:354)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.hadoop.examples.QuasiMonteCarlo.main(QuasiMonteCarlo.java:363)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:71)
at org.apache.hadoop.util.ProgramDriver.run(ProgramDriver.java:144)
at org.apache.hadoop.examples.ExampleDriver.main(ExampleDriver.java:74)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.net.ConnectException: 拒绝连接
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:530)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:494)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:607)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:705)
at org.apache.hadoop.ipc.Client$Connection.access$2800(Client.java:368)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1521)
at org.apache.hadoop.ipc.Client.call(Client.java:1438)
... 43 more
17/02/28 02:11:59 INFO client.ConfiguredRMFailoverProxyProvider: Failing over to rm1
17/02/28 02:11:59 INFO retry.RetryInvocationHandler: Exception while invoking getApplicationReport of class ApplicationClientProtocolPBClientImpl over rm1 after 2 fail over attempts. Trying to fail over after sleeping for 17213ms.
java.net.ConnectException: Call From dn-2/192.168.9.24 to dn-1:8032 failed on connection exception: java.net.ConnectException: 拒绝连接; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:791)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:731)
at org.apache.hadoop.ipc.Client.call(Client.java:1472)
at org.apache.hadoop.ipc.Client.call(Client.java:1399)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:232)
at com.sun.proxy.$Proxy14.getApplicationReport(Unknown Source)
at org.apache.hadoop.yarn.api.impl.pb.client.ApplicationClientProtocolPBClientImpl.getApplicationReport(ApplicationClientProtocolPBClientImpl.java:187)
at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy15.getApplicationReport(Unknown Source)
at org.apache.hadoop.yarn.client.api.impl.YarnClientImpl.getApplicationReport(YarnClientImpl.java:399)
at org.apache.hadoop.mapred.ResourceMgrDelegate.getApplicationReport(ResourceMgrDelegate.java:302)
at org.apache.hadoop.mapred.ClientServiceDelegate.getProxy(ClientServiceDelegate.java:153)
at org.apache.hadoop.mapred.ClientServiceDelegate.invoke(ClientServiceDelegate.java:322)
at org.apache.hadoop.mapred.ClientServiceDelegate.getJobStatus(ClientServiceDelegate.java:422)
at org.apache.hadoop.mapred.YARNRunner.getJobStatus(YARNRunner.java:575)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:325)
at org.apache.hadoop.mapreduce.Job$1.run(Job.java:322)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
at org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:322)
at org.apache.hadoop.mapreduce.Job.isComplete(Job.java:610)
at org.apache.hadoop.mapreduce.Job.monitorAndPrintJob(Job.java:1355)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1317)
at org.apache.hadoop.examples.QuasiMonteCarlo.estimatePi(QuasiMonteCarlo.java:306)
at org.apache.hadoop.examples.QuasiMonteCarlo.run(QuasiMonteCarlo.java:354)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.hadoop.examples.QuasiMonteCarlo.main(QuasiMonteCarlo.java:363)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:71)
at org.apache.hadoop.util.ProgramDriver.run(ProgramDriver.java:144)
at org.apache.hadoop.examples.ExampleDriver.main(ExampleDriver.java:74)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.net.ConnectException: 拒绝连接
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:739)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:530)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:494)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:607)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:705)
at org.apache.hadoop.ipc.Client$Connection.access$2800(Client.java:368)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1521)
at org.apache.hadoop.ipc.Client.call(Client.java:1438)
... 42 more
17/02/28 02:12:16 INFO client.ConfiguredRMFailoverProxyProvider: Failing over to rm2
17/02/28 02:12:18 INFO mapreduce.Job: Job job_1488216892564_0002 running in uber mode : false
17/02/28 02:12:18 INFO mapreduce.Job: map 0% reduce 0%
17/02/28 02:12:22 INFO mapreduce.Job: map 100% reduce 0%
17/02/28 02:12:28 INFO mapreduce.Job: map 100% reduce 100%
17/02/28 02:12:28 INFO mapreduce.Job: Job job_1488216892564_0002 completed successfully
17/02/28 02:12:28 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=50
FILE: Number of bytes written=326931
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=510
HDFS: Number of bytes written=215
HDFS: Number of read operations=11
HDFS: Number of large read operations=0
HDFS: Number of write operations=3
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=22713
Total time spent by all reduces in occupied slots (ms)=3213
Total time spent by all map tasks (ms)=22713
Total time spent by all reduce tasks (ms)=3213
Total vcore-seconds taken by all map tasks=22713
Total vcore-seconds taken by all reduce tasks=3213
Total megabyte-seconds taken by all map tasks=23258112
Total megabyte-seconds taken by all reduce tasks=3290112
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=36
Map output materialized bytes=56
Input split bytes=274
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=56
Reduce input records=4
Reduce output records=0
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=233
CPU time spent (ms)=12680
Physical memory (bytes) snapshot=517484544
Virtual memory (bytes) snapshot=2548441088
Total committed heap usage (bytes)=260186112
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=236
File Output Format Counters
Bytes Written=97
Job Finished in 76.447 seconds
Estimated value of Pi is 3.17000000000000000000
[hadoop@dn-2 hadoop]$
7、安装Spark
规划, 在现有的Hadoop集群安装spark集群:
master节点: nn-1
worker节点: nn-2、dn-1、dn-2、dn-3。
7.1 安装配置Scala
上传安装包到nn-1的/hadoop目录下面,解压:
[hadoop@nn-1 ~]$ tar -xzvf spark-1.6.0-bin-hadoop2.6.tgz
环境变量后面统一配置。
7.2 安装spark
上传安装包spark-1.6.0-bin-hadoop2.6.tgz到nn-1的目录/hadoop下面, 解压
[hadoop@nn-1 ~]$ tar -xzvf spark-1.6.0-bin-hadoop2.6.tgz
进入目录:/hadoop/spark-1.6.0-bin-hadoop2.6/conf
复制生成文件spark-env.sh和slaves:
[hadoop@nn-1 conf]$ pwd
/hadoop/spark-1.6.0-bin-hadoop2.6/conf
[hadoop@nn-1 conf]$ cp spark-env.sh.template spark-env.sh
[hadoop@nn-1 conf]$ cp slaves.template slaves
编辑
spark-env.sh, 加入如下内容:
export JAVA_HOME=/usr/local/java/jdk1.7.0_79
export SCALA_HOME=/hadoop/scala-2.11.7
export SPARK_HOME=/hadoop/spark-1.6.0-bin-hadoop2.6
export SPARK_MASTER_IP=nn-1
export SPARK_WORKER_MEMORY=2g
export HADOOP_CONF_DIR=/hadoop/hadoop/etc/hadoop
SPARK_WORKER_MEMORY根据实际情况配置。
编辑
spark-env.sh, 加入如下内容:slaves
nn-2
dn-1
dn-2
dn-3
slaves指定的是worker节点。
7.3 配置环境变量
[hadoop@nn-1 ~]$ vim .bash_profile
追加如下内容:
export HADOOP_HOME=/hadoop/hadoop
export SCALA_HOME=/hadoop/scala-2.11.7
export SPARK_HOME=/hadoop/spark-1.6.0-bin-hadoop2.6
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$SCALA_HOME/bin:$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
7.4 分发上面配置好的scala和spark目录到其他节点
[hadoop@nn-1 bin]$ cd /hadoop
[hadoop@nn-1 ~]$ scp -rp spark-1.6.0-bin-hadoop2.6 hadoop@dn-1:/hadoop
[hadoop@nn-1 ~]$ scp -rp scala-2.11.7 hadoop@dn-1:/hadoop
7.5 启动Spark集群
[hadoop@nn-1 ~]$ /hadoop/spark-1.6.0-bin-hadoop2.6/sbin/start-all.sh
在nn-1和其他slaves节点查看进程:
在nn-1节点, 可以看到Master进程:
[hadoop@nn-1 ~]$ jps
2473 JournalNode
2541 NameNode
4401 Jps
2399 DFSZKFailoverController
2687 JobHistoryServer
2775 Master
2351 QuorumPeerMain
在
slaves节点可以看到Worker进程:
[hadoop@dn-1 ~]$ jps
2522 NodeManager
3449 Jps
2007 QuorumPeerMain
2141 DataNode
2688 Worker
2061 JournalNode
2258 ResourceManager
查看spark页面:
http://192.168.9.21:8080/
7.6 运行测试案例
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn --deploy-mode cluster \
--driver-memory 100M \
--executor-memory 200M \
--executor-cores 1 \
--queue default \
lib/spark-examples*.jar 10
或者:
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn --deploy-mode cluster \
--executor-cores 1 \
--queue default \
lib/spark-examples*.jar 10
8、配置机架感知
在nn-1和nn-2节点的配置文件/hadoop/hadoop/etc/hadoop/core-site.xml加入如下配置:
<property>
<name>topology.script.file.namename>
<value>/hadoop/hadoop/etc/hadoop/RackAware.pyvalue>
property>
新增文件:/hadoop/hadoop/etc/hadoop/RackAware.py,内容如下:
#!/usr/bin/python
#-*-coding:UTF-8 -*-
import sys
rack = {"dn-1":"rack2",
"dn-2":"rack1",
"dn-3":"rack1",
"192.168.9.23":"rack2",
"192.168.9.24":"rack1",
"192.168.9.25":"rack1",
}
if __name__=="__main__":
print "/" + rack.get(sys.argv[1],"rack0")
设置权限:
[root@nn-1 hadoop]# chmod +x RackAware.py
[root@nn-1 hadoop]# ll RackAware.py
-rwxr-xr-x 1 hadoop hadoop 294 3月 1 21:24 RackAware.py
重启nn-1和nn-2上的NameNode服务:
[hadoop@nn-1 ~]$ hadoop-daemon.sh stop namenode
stopping namenode
[hadoop@nn-1 ~]$ hadoop-daemon.sh start namenode
starting namenode, logging to /hadoop/hadoop/logs/hadoop-hadoop-namenode-nn-1.out
查看日志:
[root@nn-1 logs]# pwd
/hadoop/hadoop/logs
[root@nn-1 logs]# vim hadoop-hadoop-namenode-nn-1.log
使用命令查看拓扑:
[hadoop@dn-3 ~]$ hdfs dfsadmin -printTopology
17/03/02 00:21:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Rack: /rack1
192.168.9.24:50010 (dn-2)
192.168.9.25:50010 (dn-3)
Rack: /rack2
192.168.9.23:50010 (dn-1)