XGBoost for Ranking 使用方法

XGBoost 是原生支持 rank 的,只需要把 model参数中的 objective 设置为objective="rank:pairwise" 即可。但是官方文档页面的Text Input Format部分只说输入是一个train.txt加一个train.txt.group, 但是并没有这两个文件具体的内容格式以及怎么读取,非常不清楚。
相关中文资料基本没有,英文资料也很零散。根据这些资料,我整理了XGBoost 做 ranking的两个代码 Demo,方便大家去用 XGBoost 做 ranking。

1. XGBoost原生支持

数据格式 : 第一列是 label,后面的特征,用 DMatrix。
DMatrix有set_group方法,调用设置 groupId。(groupId 的概念在 rank 中广泛适用,只有同一个 group 中的样本才有排序的意义。对于IR任务来说,不同 query对应不同group。)
注意set_group 方法传入的是每个 group 中元素的个数,[1,3,6]对应第一组有1条样本,第二组3条,第三组6条。即训练集有10条样本的话,按顺序,第1条设置为第1组,2-4条设置为第2组,5-10条设置为第3组。

import pandas as pd
import numpy as np
from xgboost import DMatrix,train

xgb_rank_params1 ={    
    'booster' : 'gbtree',
    'eta': 0.1,
    'gamma' : 1.0 ,
    'min_child_weight' : 0.1,
    'objective' : 'rank:pairwise',
    'eval_metric' : 'merror',
    'max_depth' : 6,
    'num_boost_round':10,
    'save_period' : 0 
}

xgb_rank_params2 = {
    'bst:max_depth':2, 
    'bst:eta':1, 'silent':1, 
    'objective':'rank:pairwise',
    'nthread':4,
    'eval_metric':'ndcg'
}
  

#generate training dataset
#一共2组*每组3条,6条样本,特征维数是2
n_group=2
n_choice=3  
dtrain=np.random.uniform(0,100,[n_group*n_choice,2])    
#numpy.random.choice(a, size=None, replace=True, p=None)
dtarget=np.array([np.random.choice([0,1,2],3,False) for i in range(n_group)]).flatten()
#n_group用于表示从前到后每组各自有多少样本,前提是样本中各组是连续的,[3,3]表示一共6条样本中前3条是第一组,后3条是第二组
dgroup= np.array([n_choice for i in range(n_group)]).flatten()

# concate Train data, very import here !
xgbTrain = DMatrix(dtrain, label = dtarget)
xgbTrain.set_group(dgroup)

# generate eval data
dtrain_eval=np.random.uniform(0,100,[n_group*n_choice,2])        
xgbTrain_eval = DMatrix(dtrain_eval, label = dtarget)
xgbTrain_eval .set_group(dgroup)
evallist  = [(xgbTrain,'train'),(xgbTrain_eval, 'eval')]

# train model
# xgb_rank_params1加上 evals 这个参数会报错,还没找到原因
# rankModel = train(xgb_rank_params1,xgbTrain,num_boost_round=10)
rankModel = train(xgb_rank_params2,xgbTrain,num_boost_round=20,evals=evallist)

#test dataset
dtest=np.random.uniform(0,100,[n_group*n_choice,2])    
dtestgroup=np.array([n_choice for i in range(n_group)]).flatten()
xgbTest = DMatrix(dtest)
xgbTest.set_group(dgroup)

# test
print(rankModel.predict( xgbTest))
XGBoost for Ranking 使用方法_第1张图片
结果

2. xgboostExtension

有大神自己重新封装 XGBoost的 rank 方法 --- xgboostExtension,可以更简易便捷的完成 rank 调用。
在其基础上我再精简出来了一个XGBRanker类,进一步方便调用。

  • XGBRanker.py
import numpy as np
from sklearn.utils import check_X_y, check_array
from xgboost import DMatrix, train
from xgboost import XGBModel
from xgboost.sklearn import _objective_decorator
from scipy import sparse


class XGBRanker(XGBModel):
    __doc__ = """Implementation of sklearn API for XGBoost Ranking
           """ + '\n'.join(XGBModel.__doc__.split('\n')[2:])
    
    def __init__(self, max_depth=3, learning_rate=0.1, n_estimators=100, 
                 silent=True, objective="rank:pairwise", booster='gbtree',
                 n_jobs=-1, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0,
                 subsample=1, colsample_bytree=1, colsample_bylevel=1,
                 reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
                 base_score=0.5, random_state=0, seed=None, missing=None, **kwargs): 
        
        super(XGBRanker, self).__init__(max_depth, learning_rate,
                                        n_estimators, silent, objective, booster,
                                        n_jobs, nthread, gamma, min_child_weight, max_delta_step, 
                                        subsample, colsample_bytree, colsample_bylevel,
                                        reg_alpha, reg_lambda, scale_pos_weight,
                                        base_score, random_state, seed, missing)

    def _preprare_data_in_groups(self,X, y=None, sample_weights=None):
        """
        Takes the first column of the feature Matrix X given and
        transforms the data into groups accordingly.
        Parameters
        ----------
        X : (2d-array like) Feature matrix with the first column the group label
        y : (optional, 1d-array like) target values
        sample_weights : (optional, 1d-array like) sample weights
        Returns
        -------
        sizes: (1d-array) group sizes
        X_features : (2d-array) features sorted per group
        y : (None or 1d-array) Target sorted per group
        sample_weights: (None or 1d-array) sample weights sorted per group
        """
        if sparse.issparse(X):
            group_labels = X.getcol(0).toarray()[:,0]
        else:
            group_labels = X[:,0]

        group_indices = group_labels.argsort()

        group_labels = group_labels[group_indices]
        _, sizes = np.unique(group_labels, return_counts=True)
        X_sorted = X[group_indices]
        X_features = X_sorted[:, 1:]

        if y is not None:
            y = y[group_indices]

        if sample_weights is not None:
            sample_weights = sample_weights[group_indices]

        return sizes, X_sorted, X_features, y, sample_weights


    def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None,
            early_stopping_rounds=None, verbose=True, xgb_model=None):
        """
        Fit the gradient boosting model
        Parameters
        ----------
        X : array_like
            Feature matrix with the first feature containing a group indicator
        y : array_like
            Labels
        sample_weight : array_like
            instance weights
        eval_set : list, optional
            A list of (X, y) tuple pairs to use as a validation set for
            early-stopping
        eval_metric : str, callable, optional
            If a str, should be a built-in evaluation metric to use. See
            doc/parameter.md. If callable, a custom evaluation metric. The call
            signature is func(y_predicted, y_true) where y_true will be a
            DMatrix object such that you may need to call the get_label
            method. It must return a str, value pair where the str is a name
            for the evaluation and value is the value of the evaluation
            function. This objective is always minimized.
        early_stopping_rounds : int
            Activates early stopping. Validation error needs to decrease at
            least every  round(s) to continue training.
            Requires at least one item in evals.  If there's more than one,
            will use the last. Returns the model from the last iteration
            (not the best one). If early stopping occurs, the model will
            have three additional fields: bst.best_score, bst.best_iteration
            and bst.best_ntree_limit.
            (Use bst.best_ntree_limit to get the correct value if num_parallel_tree
            and/or num_class appears in the parameters)
        verbose : bool
            If `verbose` and an evaluation set is used, writes the evaluation
            metric measured on the validation set to stderr.
        xgb_model : str
            file name of stored xgb model or 'Booster' instance Xgb model to be
            loaded before training (allows training continuation).
        """

        X, y = check_X_y(X, y, accept_sparse=False, y_numeric=True)

        sizes, _, X_features, y, _ = self._preprare_data_in_groups(X, y)

        params = self.get_xgb_params()

        if callable(self.objective):
            obj = _objective_decorator(self.objective)
            # Dummy, Not used when custom objective is given
            params["objective"] = "binary:logistic"
        else:
            obj = None

        evals_result = {}
        feval = eval_metric if callable(eval_metric) else None
        if eval_metric is not None:
            if callable(eval_metric):
                eval_metric = None
            else:
                params.update({'eval_metric': eval_metric})

        if sample_weight is not None:
            train_dmatrix = DMatrix(X_features, label=y, weight=sample_weight,
                                    missing=self.missing)
        else:
            train_dmatrix = DMatrix(X_features, label=y,
                                    missing=self.missing)

        train_dmatrix.set_group(sizes)

        self._Booster = train(params, train_dmatrix, 
                              self.n_estimators,
                              early_stopping_rounds=early_stopping_rounds,
                              evals_result=evals_result, obj=obj, feval=feval,
                              verbose_eval=verbose, xgb_model=xgb_model)

        if evals_result:
            for val in evals_result.items():
                evals_result_key = list(val[1].keys())[0]
                evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
            self.evals_result = evals_result

        if early_stopping_rounds is not None:
            self.best_score = self._Booster.best_score
            self.best_iteration = self._Booster.best_iteration
            self.best_ntree_limit = self._Booster.best_ntree_limit

        return self

    def predict(self, X, output_margin=False, ntree_limit=0):
        sizes, _, X_features, _, _ = self._preprare_data_in_groups(X)

        test_dmatrix = DMatrix(X_features, missing=self.missing)
        test_dmatrix.set_group(sizes)
        rank_values = self.get_booster().predict(test_dmatrix,
                                                 output_margin=output_margin,
                                                 ntree_limit=ntree_limit)
        return rank_values
  • 调用demo
CASE_NUM = 20
GROUPS_NUM = 4

if CASE_NUM % GROUPS_NUM != 0:
    raise ValueError('Cases should be splittable into equal groups.')

# Generate some sample data to illustrate ranking
X_features = np.random.rand(CASE_NUM, 4)
y = np.random.randint(5, size=CASE_NUM)
X_groups = np.arange(0, GROUPS_NUM).repeat(CASE_NUM/GROUPS_NUM)

print("X="+str(X_features))
print("y="+str(y))

# Append the group labels as a first axis to the features matrix
# this is how the algorithm can distinguish between the different
# groups
X = np.concatenate([X_groups[:,None], X_features], axis=1)


# objective = rank:pairwise(default).
# Although rank:ndcg is also available,  rank:ndcg(listwise) is much worse than pairwise.
# So ojective is always rank:pairwise whatever you write. 
ranker = XGBRanker(n_estimators=150, learning_rate=0.1, subsample=0.9)


ranker.fit(X, y, eval_metric=['ndcg', 'map@5-'])
y_predict = ranker.predict(X)

print("predict:"+str(y_predict))
print("type(y_predict):"+str(type(y_predict)))
XGBoost for Ranking 使用方法_第2张图片
结果
参考资料
  1. Text Input Format of DMatrix from XBGoost tutorials
  2. xgboostExtension
  3. How fit pairwise ranking models in xgBoost?
  4. Trying to use xgboost for pairwise ranking
  5. XGBoost pairwise setup - python

你可能感兴趣的:(XGBoost for Ranking 使用方法)