1,简介
MYSQL主从同步是目前使用比较广泛的数据库架构,技术比较成熟,配置也不复杂,特别是对于负载比较大的网站,主从同步能够有效缓解数据库读写的压力。
2,MySQL主从同步机制
MYSQL主从同步是在MySQL主从复制(Master-Slave Replication)基础上实现的,通过设置在Master MySQL上的binlog(使其处于打开状态),Slave MySQL上通过一个I/O线程从Master MySQL上读取binlog,然后传输到Slave MySQL的中继日志中,然后Slave MySQL的SQL线程从中继日志中读取中继日志,然后应用到Slave MySQL的数据库中。这样实现了主从数据同步功能。
4,MySQL主从同步作用
4.1,可以作为一种备份机制,相当于热备份
4.2,可以用来做读写分离,均衡数据库负载
6,MySQL主从同步的具体实现步骤
6.1,准备工作
a,主从数据库版本一致,建议版本5.5以上
b,主从数据库数据一致
6.2,主数据库master修改(打开bin-log并设置server-id)
vim /etc/my.cnf
7,接下来,我们配置从库
7.1,修改从库的配置文件(如果从库没有备份或者再给从库配置从库的话,从库可以不用开启bin-log)
vim /etc/my.cnf
8,测试主从同步是否配置成功
在主库上创建一个数据库,创建一张表然后添加几条数据,查看从库上是否同步了
主库:
从库:
9,下面讲下主从同步,从库延迟的问题
在从服务器上执行show slave status;可以查看到很多同步的参数,我们需要特别注意的参数如下:
Master_Log_File: SLAVE中的I/O线程当前正在读取的主服务器二进制日志文件的名称
Read_Master_Log_Pos: 在当前的主服务器二进制日志中,SLAVE中的I/O线程已经读取的位置
Relay_Log_File: SQL线程当前正在读取和执行的中继日志文件的名称
Relay_Log_Pos: 在当前的中继日志中,SQL线程已读取和执行的位置
Relay_Master_Log_File: 由SQL线程执行的包含多数近期事件的主服务器二进制日志文件的名称
Slave_IO_Running: I/O线程是否被启动并成功地连接到主服务器上
Slave_SQL_Running: SQL线程是否被启动
Seconds_Behind_Master: 从属服务器SQL线程和从属服务器I/O线程之间的时间差距,单位以秒计。
从库同步延迟情况出现的
9.1,show slave status显示参数Seconds_Behind_Master不为0,这个数值可能会很大
9.2,show slave status显示参数Relay_Master_Log_File和Master_Log_File显示bin-log的编号相差很大,说明bin-log在从库上没有及时同步,所以近期执行的bin-log和当前IO线程所读的bin-log相差很大
9.3,MySQL的从库数据目录下存在大量mysql-relay-log日志,该日志同步完成之后就会被系统自动删除,存在大量日志,说明主从同步延迟很厉害
a、MySQL数据库主从同步延迟原理
mysql主从同步原理:
主库针对写操作,顺序写binlog,从库单线程去主库顺序读”写操作的binlog”,从库取到binlog在本地原样执行(随机写),来保证主从数据逻辑上一致。
mysql的主从复制都是单线程的操作,主库对所有DDL和DML产生binlog,binlog是顺序写,所以效率很高,slave的Slave_IO_Running线程到主库取日志,效率比较高,下一步,问题来了,slave的Slave_SQL_Running线程将主库的DDL和DML操作在slave实施。DML和DDL的IO操作是随即的,不是顺序的,成本高很多,还可能可slave上的其他查询产生lock争用,由于Slave_SQL_Running也是单线程的,所以一个DDL卡主了,需要执行10分钟,那么所有之后的DDL会等待这个DDL执行完才会继续执行,这就导致了延时。
有朋友会问:“主库上那个相同的DDL也需要执行10分,为什么slave会延时?”,答案是master可以并发,Slave_SQL_Running线程却不可以。
b、 MySQL数据库主从同步延迟是怎么产生的?
当主库的TPS并发较高时,产生的DDL数量超过slave一个sql线程所能承受的范围,那么延时就产生了,当然还有就是可能与slave的大型query语句产生了锁等待。
首要原因:数据库在业务上读写压力太大,CPU计算负荷大,网卡负荷大,硬盘随机IO太高
次要原因:读写binlog带来的性能影响,网络传输延迟。
c、 MySQL数据库主从同步延迟解决方案。
架构方面
1.业务的持久化层的实现采用分库架构,mysql服务可平行扩展,分散压力。
2.单个库读写分离,一主多从,主写从读,分散压力。这样从库压力比主库高,保护主库。
3.服务的基础架构在业务和mysql之间加入memcache或者Redis的cache层。降低mysql的读压力。
4.不同业务的mysql物理上放在不同机器,分散压力。
5.使用比主库更好的硬件设备作为slave
总结,mysql压力小,延迟自然会变小。
硬件方面
1.采用好服务器,比如4u比2u性能明显好,2u比1u性能明显好。
2.存储用ssd或者盘阵或者san,提升随机写的性能。
3.主从间保证处在同一个交换机下面,并且是万兆环境。
总结,硬件强劲,延迟自然会变小。一句话,缩小延迟的解决方案就是花钱和花时间。
mysql主从同步加速
1、sync_binlog在slave端设置为0
2、–logs-slave-updates 从服务器从主服务器接收到的更新不记入它的二进制日志。
3、直接禁用slave端的binlog
4、slave端,如果使用的存储引擎是innodb,innodb_flush_log_at_trx_commit =2
从文件系统本身属性角度优化
master端
修改linux、Unix文件系统中文件的etime属性, 由于每当读文件时OS都会将读取操作发生的时间回写到磁盘上,对于读操作频繁的数据库文件来说这是没必要的,只会增加磁盘系统的负担影响I/O性能。可以通过设置文件系统的mount属性,组织操作系统写atime信息,在Linux上的操作为:
打开/etc/fstab,加上noatime参数
/dev/sdb1 /data reiserfs noatime 1 2
然后重新mount文件系统
#mount -oremount /data
PS:
主库是写,对数据安全性较高,比如sync_binlog=1,innodb_flush_log_at_trx_commit = 1 之类的设置是需要的
而slave则不需要这么高的数据安全,完全可以讲sync_binlog设置为0或者关闭binlog,innodb_flushlog也可以设置为0来提高sql的执行效率
1、sync_binlog=1 o
MySQL提供一个sync_binlog参数来控制数据库的binlog刷到磁盘上去。
默认,sync_binlog=0,表示MySQL不控制binlog的刷新,由文件系统自己控制它的缓存的刷新。这时候的性能是最好的,但是风险也是最大的。一旦系统Crash,在binlog_cache中的所有binlog信息都会被丢失。
如果sync_binlog>0,表示每sync_binlog次事务提交,MySQL调用文件系统的刷新操作将缓存刷下去。最安全的就是sync_binlog=1了,表示每次事务提交,MySQL都会把binlog刷下去,是最安全但是性能损耗最大的设置。这样的话,在数据库所在的主机操作系统损坏或者突然掉电的情况下,系统才有可能丢失1个事务的数据。
但是binlog虽然是顺序IO,但是设置sync_binlog=1,多个事务同时提交,同样很大的影响MySQL和IO性能。
虽然可以通过group commit的补丁缓解,但是刷新的频率过高对IO的影响也非常大。对于高并发事务的系统来说,
“sync_binlog”设置为0和设置为1的系统写入性能差距可能高达5倍甚至更多。
所以很多MySQL DBA设置的sync_binlog并不是最安全的1,而是2或者是0。这样牺牲一定的一致性,可以获得更高的并发和性能。
默认情况下,并不是每次写入时都将binlog与硬盘同步。因此如果操作系统或机器(不仅仅是MySQL服务器)崩溃,有可能binlog中最后的语句丢失了。要想防止这种情况,你可以使用sync_binlog全局变量(1是最安全的值,但也是最慢的),使binlog在每N次binlog写入后与硬盘同步。即使sync_binlog设置为1,出现崩溃时,也有可能表内容和binlog内容之间存在不一致性。
2、innodb_flush_log_at_trx_commit (这个很管用)
抱怨Innodb比MyISAM慢 100倍?那么你大概是忘了调整这个值。默认值1的意思是每一次事务提交或事务外的指令都需要把日志写入(flush)硬盘,这是很费时的。特别是使用电池供电缓存(Battery backed up cache)时。设成2对于很多运用,特别是从MyISAM表转过来的是可以的,它的意思是不写入硬盘而是写入系统缓存。
日志仍然会每秒flush到硬 盘,所以你一般不会丢失超过1-2秒的更新。设成0会更快一点,但安全方面比较差,即使MySQL挂了也可能会丢失事务的数据。而值2只会在整个操作系统 挂了时才可能丢数据。
3、ls(1) 命令可用来列出文件的 atime、ctime 和 mtime。
atime 文件的access time 在读取文件或者执行文件时更改的
ctime 文件的create time 在写入文件,更改所有者,权限或链接设置时随inode的内容更改而更改
mtime 文件的modified time 在写入文件时随文件内容的更改而更改
ls -lc filename 列出文件的 ctime
ls -lu filename 列出文件的 atime
ls -l filename 列出文件的 mtime
stat filename 列出atime,mtime,ctime
atime不一定在访问文件之后被修改
因为:使用ext3文件系统的时候,如果在mount的时候使用了noatime参数那么就不会更新atime信息。
这三个time stamp都放在 inode 中.如果mtime,atime 修改,inode 就一定会改, 既然 inode 改了,那ctime也就跟着改了.
之所以在 mount option 中使用 noatime, 就是不想file system 做太多的修改, 而改善读取效能
10,拓展阅读
MySQL日志格式binlog_format
http://blog.csdn.net/mycwq/article/details/17136997