如何评价模型的好坏(三)

  • 二分类问题
  • 多分类问题
  • 连续变量问题

四、连续变量问题(回归)

(1)距离

(2)残差

(3)残差平方和(SSE): 真实值与预测值之间误差的平方和。

(3-1)均方根误差(MSE = mean square error):真实值与预测值之间误差的平方和的均值。(最小二乘)

1 from sklearn.metrics import mean_squared_error
2 y_true =  [1,3, -0.3, 2, 7,5]
3 y_pred = [0.8,2.5, 0.0, 2, 8, 5.1]
4 mean_squared_error(y_true, y_pred)
  • 均方差越小越好,即最小二乘法。

(4)回归平方和(SSR): 预测值与样本平均值之间误差的平方和。

(5)总偏差平方和(SST): 真实值与样本平均值之间误差的平方和。

  经计算推到,SST = SSE + SSR

(5-1)平均绝对误差(MAE = mean absolute error):真实值与样本平均值之间误差的平方和的均值。

1 from sklearn.metrics import mean_squared_error
2 y_true = [1, 3, -0.3, 2, 7, 5]
3 y_pred = [0.8, 2.5, 0.0, 2, 8, 5.1]
4 mean_squared_error(y_true, y_pred)

(6)R2(r2_score):样本的总偏差平方和中,被回归平方和解释的百分比。 R2 = SSR/SST = 1-SSE/SSR (R2值越大,模型效果越好)

 

1 from sklearn.metrics import r2_score
2 y_true = [1, 3, -0.3, 2, 7, 5]
3 y_pred = [0.8, 2.5, 0.0, 2, 8, 5.1]
4 r2_score(y_true, y_pred)
  • R越接近1,模型拟合效果越好。
  • R越接近0,模型拟合效果越差。
  • 缺点:数据集越大,R2 越大。因此,不同数据集对同一模型进行测试时,所得的R不一定相同。

 (7)中值绝对误差(median_absolute_error)

   

1 from sklearn.metrics import median_absolute_error
2 y_true = [1, 3, -0.3, 2, 7, 5]
3 y_pred = [0.8, 2.5, 0.0, 2, 8, 5.1]
4 median_absolute_error(y_true, y_pred)

总结:

  • 以上几个指标全部依赖于数据集,当数据集发生变化时,值也随之发生变化。

你可能感兴趣的:(如何评价模型的好坏(三))