痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法


  大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是飞思卡尔i.MX RTyyyy系列MCU的eFUSE

  在i.MXRTyyyy启动系列第二篇文章 Boot配置(BOOT Pin, eFUSE) 里痞子衡提到了eFUSE,部分Boot配置都存储在eFUSE memory里,但是对eFUSE的介绍仅仅浅尝辄止,没有深入,今天痞子衡就为大家再进一步介绍eFUSE。

  eFUSE是i.MXRTyyyy里一块特殊的存储区域,用于存放全部芯片配置信息,其中有一部分配置信息和Boot相关。这块特殊存储区域并不在ARM的4G system address空间里,需要用特殊的方式去访问(读/写),如何访问eFUSE是本篇文章的重点。

一、eFUSE基本原理

1.1 eFUSE属性(OTP, Lock)

  eFUSE本质上就是i.MXRTyyyy内嵌的一块OTP(One Time Programmable) memory,仅可被烧写一次,但可以被多次读取。eFUSE memory的烧写是按bit进行的,初始状态下所有eFUSE bit均为0,通过特殊的烧写时序可以将bit从0改成1,一旦某bit被烧写成1后便再也无法被修改(可理解为硬件熔丝烧断了无法恢复)
  i.MXRTyyyy的eFUSE memory总地址空间有1.75KB(地址范围为0x000 - 0x6FF),但可读写操作的空间只有192bytes(位于0x400 - 0x6FF区域),分为6个BANK,每个BANK含8个word(1word = 4bytes)。下图中0x00 - 0x2F是eFUSE的bank word索引地址(也叫index地址),其与eFUSE空间地址对应关系是:

fuse_address = fuse_index * 0x10 + 0x400

痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法_第1张图片

  上述可读写的eFUSE memory空间除了OTP特性外,还有Lock控制特性,Lock控制是OTP memory的标配,Lock控制有三层:第一层是WP,即写保护,用于保护那些不需要被烧写成1的eFUSE bit;第二层是OP,即覆盖保护,包含WP功能,并且被保护的eFUSE区域对应的shadow register也不能被重写;第三层是RP(WP+OP+RP),即访问保护,被保护的eFUSE区域及其对应的shadow register均不能被读写。 Lock控制在eFUSE的BANK0_word0,如下是具体Lock bit定义:

痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法_第2张图片

关于可读写eFUSE空间所有bit定义详见Reference Manual里的Table 5-9. Fusemap Descriptions。

1.2 OCOTP控制器与Shadow Register

  i.MXRT内部有一个硬件IP模块叫OCOTP_CTRL,即OCOTP控制器,对eFUSE memory的读写控制操作其实都是通过这个OCOTP控制器实现的,下图是OCOTP_CTRL模块图:

痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法_第3张图片

  OCOTP_CTRL模块寄存器一共分两类:一类是IP控制寄存器,用于实现对OTP memory的读写操作时序控制;一类是Shadow register,用于上电时自动从eFUSE memory获取数据并缓存,这样我们可以直接访问Shadow register而不用访问eFUSE memory也能获取eFUSE内容(注意:当芯片运行中烧写eFUSE,Shadow register的值并不会立刻更新,需要执行IP控制器的reload命令或者将芯片reset才能同步)。

  IP控制寄存器偏移地址范围是0x000 - 0x3FF(下图仅截取部分):

痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法_第4张图片

  Shadow register寄存器偏移地址范围是0x400 - 0x6FF(下图仅截取部分),看到0x400 - 0x6FF的地址范围,有没有感觉很熟悉?是的,这跟上一节讲的可读写操作eFUSE空间偏移地址范围是一致的。

痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法_第5张图片

痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法_第6张图片

二、使用blhost烧写eFUSE

  eFUSE memory的烧写是通过OCOTP_CTRL模块来实现的,我们当然可以在Application中集成OCOTP_CTRL的驱动程序,然后在Application调用OCOTP_CTRL的驱动程序完成eFUSE的烧写,但这种方式并不是痞子衡要介绍的重点,痞子衡要介绍的是通过Flashloader配套的blhost.exe上位机工具实现eFUSE的烧写。
  痞子衡在上一篇文章里介绍过如何引导启动Flashloader并且使用blhost与Flashloader通信,此处假设你已经使用blhost与Flashloader建立了通信。让我们再来回顾一下blhost的命令help,可以得知efuse-program-once这个命令就是我们想要的命令。

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win> .\blhost.exe -?
usage: C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win\blhost.exe
                       [-p|--port [,]]
                       [-u|--usb [[[,]]]]
                       -- command 

Command:
  efuse-program-once  
                               Program one word of OCOTP Field
                                is ADDR of OTP word, not the shadowed memory address.
                                is hex digits without prefix '0x'
  efuse-read-once 
                               Read one word of OCOTP Field
                                is ADDR of OTP word, not the shadowed memory address.

  让我们试一下efuse-program-once这个命令,开始试之前要解决2个问题:
  addr参数到底是什么地址?帮助里说是OTP word address,其实这个地址就是1.1节里介绍的fuse_index,index范围为0x00 - 0x2F,对应48个可读写操作的eFUSE Word。
  data参数到底是什么格式?帮助里说是hex digits without prefix '0x',但是似乎没有指明长度,我们知道每一个index对应的是4byte,那就应该是8位16进制数据(实测下来必须要填8位,如果是非8位会返回Error: invalid command or arguments)。
  弄清了问题,那我们做一个小测试:要求将eFUSE里的SRK_REVOKE word的最低byte烧写成0x5A,然后再将最高byte烧写成0xFE,分两步进行。
  翻看OTP Memory Footprint表,找到SRK_REVOKE的index地址是0x2F(对应Shadow register地址是0x401F46F0),命令搞起来:

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win> .\blhost.exe -u -- efuse-program-once 0x2F 0000005A

Inject command 'efuse-program-once'
Successful generic response to command 'efuse-program-once'
Response status = 0 (0x0) Success.

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win> .\blhost.exe -u -- efuse-program-once 0x2F FE000000

Inject command 'efuse-program-once'
Successful generic response to command 'efuse-program-once'
Response status = 0 (0x0) Success.

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win> .\blhost.exe -u -- efuse-read-once 0x2F

Inject command 'efuse-read-once'
Response status = 0 (0x0) Success.
Response word 1 = 4 (0x4)
Response word 2 = -33554342 (0xfe00005a)

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\blhost\win> .\blhost.exe -u -- read-memory 0x401F46F0 4

Inject command 'read-memory'
Successful response to command 'read-memory'
5a 00 00 fe
(1/1)100% Completed!
Successful generic response to command 'read-memory'
Response status = 0 (0x0) Success.
Response word 1 = 4 (0x4)
Read 4 of 4 bytes.

  看起来命令执行正常,但你是不是会有几个疑问:
  为何执行第二条命令将0xFE000000烧写进eFUSE时没有报错?显然第一条命令已经将0x0000005A烧写进eFUSE,而0xFE000000的最低byte是0x00,看起来它跟已经烧写进去的0x5A是冲突的,而前面介绍过eFUSE bit只能从0烧写为1,其实这不是问题,OCOTP controller会自动过滤将eFUSE bit从1烧写为0的操作。
  为何eFUSE被烧写后,并没有reset操作,用read-memory去获取Shadow register可以立即看到数据同步更新了?其实blhost里的efuse-program-once命令不仅包含program命令,也自动集成了reload命令。

  虽然只有blhost可以实现eFUSE烧写功能,但要获取eFUSE状态并不是只有blhost可以做到,sdphost也可以做到,因为sdphost提供了读写Shadow register的命令。

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\sdphost\win> .\sdphost.exe -u 0x1fc9,0x0130 -- read-register 0x401F46F0

5a 00 00 fe
Status (HAB mode) = 1450735702 (0x56787856) HAB disabled.

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\sdphost\win> .\sdphost.exe -u 0x1fc9,0x0130 -- write-register 0x401F46F0 32 0x00000000

Status (HAB mode) = 1450735702 (0x56787856) HAB disabled.
Reponse Status = 311069202 (0x128a8a12) Write complete.

PS C:\Flashloader_i.MXRT1050_GA\Flashloader_RT1050_1.1\Tools\sdphost\win> .\sdphost.exe -u 0x1fc9,0x0130 -- read-register 0x401F46F0

00 00 00 00
Status (HAB mode) = 1450735702 (0x56787856) HAB disabled.

  至此,飞思卡尔i.MX RTyyyy系列MCU的eFUSE痞子衡便介绍完毕了,掌声在哪里~~~

你可能感兴趣的:(痞子衡嵌入式:飞思卡尔i.MX RTyyyy系列MCU启动那些事(5)- 再聊eFUSE及其烧写方法)