《Scikit-Learn与TensorFlow机器学习实用指南》第8章 降维

第8章 降维

来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目

译者:@loveSnowBest

校对:@飞龙

很多机器学习的问题都会涉及到有着几千甚至数百万维的特征的训练实例。这不仅让训练过程变得非常缓慢,同时还很难找到一个很好的解,我们接下来就会遇到这种情况。这种问题通常被称为维数灾难(curse of dimentionality)。

幸运的是,在现实生活中我们经常可以极大的降低特征维度,将一个十分棘手的问题转变成一个可以较为容易解决的问题。例如,对于 MNIST 图片集(第 3 章中提到):图片四周边缘部分的像素几乎总是白的,因此你完全可以将这些像素从你的训练集中扔掉而不会丢失太多信息。图 7-6 向我们证实了这些像素的确对我们的分类任务是完全不重要的。同时,两个相邻的像素往往是高度相关的:如果你想要将他们合并成一个像素(比如取这两个像素点的平均值)你并不会丢失很多信息。

警告:降维肯定会丢失一些信息(这就好比将一个图片压缩成 JPEG 的格式会降低图像的质量),因此即使这种方法可以加快训练的速度,同时也会让你的系统表现的稍微差一点。降维会让你的工作流水线更复杂因而更难维护。所有你应该先尝试使用原始的数据来训练,如果训练速度太慢的话再考虑使用降维。在某些情况下,降低训练集数据的维度可能会筛选掉一些噪音和不必要的细节,这可能会让你的结果比降维之前更好(这种情况通常不会发生;它只会加快你训练的速度)。

降维除了可以加快训练速度外,在数据可视化方面(或者 DataViz)也十分有用。降低特征维度到 2(或者 3)维从而可以在图中画出一个高维度的训练集,让我们可以通过视觉直观的发现一些非常重要的信息,比如聚类。

在这一章里,我们将会讨论维数灾难问题并且了解在高维空间的数据。然后,我们将会展示两种主要的降维方法:投影(projection)和流形学习(Manifold Learning),同时我们还会介绍三种流行的降维技术:主成分分析(PCA),核主成分分析(Kernel PCA)和局部线性嵌入(LLE)。

阅读全文

你可能感兴趣的:(《Scikit-Learn与TensorFlow机器学习实用指南》第8章 降维)