(GeekBand)系统设计与实践 案例分析

案例

  • News Feeds
  • Stats Server
  • Web Crawler
  • Amazon Product Page

News feed(信息流)

Define feed

Organize
  • aggregate(分类)
  • dedup(去重)
  • sort(排序)

Level1.0

Database Schema:
  • User
  • Friendship
  • News
GetNewsfeed:
  • merge news
  • Newsfeed vs News

Why bad?

100+ friends
1Query-->Get friends list

1Query-->

SELECT news

WHERE timestamp>xxx
AND sourceid IN friend list
LIMIT 1000

IN is slow

Either Sequential scan or 100+ index queries

Level 2.0

Pull vs Push

Pull:Get news from each friend,merge them together.(NewsFeed generated when user request)

Push:NewsFeed generated when news generated.(we have another table to store newsfeed,may cause duplicate news)

Push:
1Query to select latest 1000 newsfeed.
100+ insert queries(Async)

Disadvantage:News Delay.

Level 3.0

Popular star(Justin Bieber)

Flowers 13M+

Async Push may cause over 30 minutes(13M+ insertions,delay too long)

Push+Pull

for popular star,don't push news to flowers

for every newfeed reqiest,merge non-popular user newfeed(push) and popular users newsfeed(pull)

Level 4.0

Push disadvantage
  • Realtime
  • Storage(Duplicate)
  • Edit
Go back to PULL:
  • Cache users' latest (14days) news
  • Broadcast multiple request to multiple servers(Shard by userld).
  • Merge & sort newsfeed
  • Cache newsfeeds for this user with timestamp

Click Stats Server

How are click stats stored

A poor candidate will suggest write-back to a data store on every click

A good candidate will suggest some form of aggregation tier that accepts clickstream data,aggregates it,and writes back a persistent data store periodically

A great candidate will suggest alow-latecy messaging system to bugger the click data and transfer it to the aggregation tier.

If daily,storing in hdfs and running map/reduce jobs to compute stats is a reasonable approach

If near real-time,the aggregation logic should compute stats

PS:要如何统计鼠标点击的次数以及相关区域呢?普通的程序员会将每次点击的数据(log)直接存储在数据库一层。比较好的程序员会在前段与数据库间加一个中间层,为点击的数据流做一次聚合,每隔一段时间(1分钟或10分钟)做一次刷新,存储到数据库,大大减轻了后端的压力。优秀的程序员综合以上的两种情况,对于数据量很大,实时性效果不高的情况下,可以通过分布式的批处理方式,将刷新聚合层的时间定位一天。对于时效性强的要适当缩短刷新时间。

Cache Requirement

  • When a request comes look it up in the cache and if it hits then return the response from here and do not pass the request to the system.
  • If the request is not found in the cache then pass it on to the system.
  • Since cache can only store the last n requests,Insert the n+1th request in the cache and delete one of the older requests from the cache
  • Design one cache such that all operations can be done in O(1)-lookup,delete and insert.
PS:如何设计cache(LRU设计相关):
  • 在层中缓存部分请求的处理方式,如果接收的请求在层中存在对应的处理方式,则无需把请求发送到后端系统
  • 如果在层中找不到对应处理,则发送需求到后端
  • 以定长队列的形式缓存,缓存最近的n个需求,头进尾出
  • 将层中的匹配操作算法控制在O(1)范围

Web Crawler

爬虫

Amazon Product Page

The product page includes information such as
  • product information
  • user information
  • recommended products(what do other customers buy after viewing this item,recommendations for you like this product,etc)
Reference
  • http://highscalability.com
  • The Log:What every software engineer should know about real-time data's unifying abstraction
  • Job Interviews:How should I prepare system design questions for Goole/Facebook Interview?
  • HOW TO ACE A SYSTEMS DESIGN INTERVIEW
  • http://www.hiredintech.com/app

你可能感兴趣的:((GeekBand)系统设计与实践 案例分析)