Action/Transformation
所谓的Action与Transformation的区别: Action就是会触发DAGScheduler的runJob()方法,向DAGScheduler提交任务而已罢了;
在RDD类中,可以显式地搜索runJob
,找到如下所谓的Action方法:
foreach(f: T => Unit): Unit
foreachPartition(f: Iterator[T] => Unit): Unit
collect(): Array[T]
toLocalIterator: Iterator[T]
reduce(f: (T, T) => T): T
fold(zeroValue: T)(op: (T, T) => T): T
aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
count(): Long
take(num: Int): Array[T]
而另一类方法,比如saveAsTextFile()方法则隐式地,在函数内部会调用runJob方法:
saveAsTextFile(path: String): Unit
def saveAsNewAPIHadoopDataset(conf: Configuration): Unit = self.withScope {
...
jobCommitter.setupJob(jobTaskContext)
// 此处触发runJob()
self.context.runJob(self, writeShard)
jobCommitter.commitJob(jobTaskContext)
}
窄依赖/宽依赖
窄依赖:查看其dependency,如果为如下dependency则为窄依赖
OneToOneDependency
PruneDependency
RangeDependency
通常对应的RDD方法为:
map
mapValues
flatMap
filter
mapPartitions
mapPartitionsWithIndex
宽依赖:其依赖的dependency为ShuffleDependency,其通常对应的RDD方法为(有些RDD方法支持参数可配置是否进行shuffle的):
cogroup
groupWith
join
leftOuterJoin
rightOuterJoin
groupByKey
reduceByKey
combineByKey
distinct
intersection
repartition
coalesce
DAGScheduler调度算法
DAGScheduler调度的核心为,按照宽依赖(Shuffle)分成各阶段的;
Job: 也就是上述将的submitJob()级别的任务,比如说count()是一个job, saveAsTextFile()也是一个job, take()也是一个job;
Stage: Job按照下述的算法分割成的一个单元模块,如果该stage下没有了宽依赖的RDD或者一个几个RDD组成的;
Task: Spark执行任务的最小单元;
// 通过递归方法完成stage的调度
/** Submits stage, but first recursively submits any missing parents. */
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
// 此处获取ShuffleMapStage
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
// 如果该stage下没有了宽依赖的RDD,则执行该RDD
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}
private def getMissingParentStages(stage: Stage): List[Stage] = {
val missing = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent StackOverflowError
// caused by recursively visiting
val waitingForVisit = new Stack[RDD[_]]
def visit(rdd: RDD[_]) {
if (!visited(rdd)) {
visited += rdd
val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
if (rddHasUncachedPartitions) {
for (dep <- rdd.dependencies) {
dep match {
// 如果是宽依赖且mapStage还不可用,则添加该stage至missing stage集合
case shufDep: ShuffleDependency[_, _, _] =>
// 将stage转换为ShuffleMapStage
val mapStage = getShuffleMapStage(shufDep, stage.firstJobId)
// 如果该stage的输出==其partition则任务已经完成并可用的,该动作是在task完成后更新的
if (!mapStage.isAvailable) {
missing += mapStage
}
case narrowDep: NarrowDependency[_] =>
waitingForVisit.push(narrowDep.rdd)
}
}
}
}
}
waitingForVisit.push(stage.rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
missing.toList
}
ShuffleMapStage/ResultStage和ShuffleMapTask/ResultTask
ShuffleMap和Result为DAGScheduler调度算法(参考上部分)对stage的划分,runJob()提交任务的rdd会被转换为ResultStage,而其他由宽依赖所划分的stage则会被转换为ShuffleMapStage;
在针对ShuffleMapStage/ResultStage这两者stage进行任务分发和任务完成处理时是需要分开处理的,在任务分发阶段其处理如下:
val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
// 对于ShuffleMapStage遍历dependencies构造ShuffleMapTask,其runTask()需要依赖shuflleManager
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.latestInfo.taskMetrics, properties)
}
//对于ResultStage遍历dependencies构造ResultTask
case stage: ResultStage =>
val job = stage.activeJob.get
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
在任务完成阶段,针对ResultTask,判定该job是否成功;
针对ShuffleMapTask,则需要注册mapOutputTracker更新shuffle完成信息;
参考:
- https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies