一、整型(int型、整数)
整型 等价于C中的有符号长整型(long)
与系统的最大整型一致(如32位机器上的整型是32位,64位机器上的整型是64位),
可以表示的整数范围在[-sys.maxint-1, sys.maxint]之间。整型字面值的表示方法有3种:
十进制(常用)、八进制(以数字“0”开头)和十六进制(以“0x”或“0X”开头)。
整型的标准库操作有如下
class int(object): """ int(x,底=10)->整数将一个数字或字符串转换成整数, 如果没有给出参数,则转换为orreturn0if。如果x是一个数字, 则返回x. int_()。对于浮点数,它会向零截断如果x不是一个数字, 或者给定了基数,那么x必须是一个字符串、字节或hutearray实例, 表示给定基数中的整数字面值。文字的前面可以加“或”。然后被空白包围。 基数默认为10。有效的基数是0和2-36。Base 0表示将字符串的Base解释为整数文字。 int (“0 b100' = 0)基地 """ def bit_length(self): # real signature unknown; restored from __doc__ """ 返回表示该数字的时占用的最少位数 >>> bin(37)#bin()是返回二进制后面有 '0b100101' >>> (37).bit_length() 6 """ pass def conjugate(self, *args, **kwargs): # real signature unknown """ 返回该复数的共轭复数""" """ a=123-12j #复数没有实部时要补0.0 返回该复数的共轭复数 b=a.conjugate() print(b) #返回复数的实数部分 a.real #返回复数的虚数部分 a.imag """ pass @classmethod # known case def from_bytes(cls, *args, **kwargs): # real signature unknown """ 功能:res = int.from_bytes(x)的含义是把bytes类型的变量x, 转化为十进制整数,并存入res中。 其中bytes类型是python3特有的类型。 函数参数:int.from_bytes(bytes, byteorder, *, signed=False)。 在IDLE或者命令行界面中使用help(int.from_bytes)命令可以查看具体介绍。 bytes是输入的变量;byteorder主要有两种: 'big'和'little';signed=True表示需要考虑符号位 举例说明:int_s = int.from_bytes(s, byteorder='little', signed=True), 其中s='\xf1\xff',则输出int_s=-15。分析一下过程, '\x'表示十六进制数,先把'f1'写成二进制数:1111 0001, 'ff'同上:1111 1111.由于s的高低位标志是'little', 即'f1'是低位,'ff'是高位,所以正确的顺序应该是'fff1', 即11111111 1111 0001.又因为要考虑符号位,第一位是1,所以s是负数, 要进行取反加一才是正确的十进制数(第一位符号位的1不变), 可以得到10000000 00001111,写成十进制,就是-15,也就是int_s的结果。 上面的例子中,如果signed=False,则无符号位;若byteorder='big', 则输入s的左边是高位,右边是低位。 >>> s1 = b'\xf1\xff' >>> print(int.from_bytes(s1, byteorder='little', signed=True)) -15 >>> print(int.from_bytes(s1, byteorder='big', signed=False)) 61951 >>> s2 = b'\xff\xf1' >>> print(int.from_bytes(s2, byteorder='little', signed=False)) 61951 """ pass def to_bytes(self, *args, **kwargs): # real signature unknown """ 参照上面from_bytes(cls, *args, **kwargs): 这是上面的逆运算 """ pass def __abs__(self, *args, **kwargs): # real signature unknown """返回绝对值""" """ x.__abs__() <==> abs(x) """ """ abs(self) """ """ a=-100 b=abs(a) c=a.__abs__() print(b) print(c) """ pass def __add__(self, *args, **kwargs): # real signature unknown """ 加法,也可区分数字和字符串""" """ x.__add__(y) <==> x+y """ """ a=10 b=20 c=a.__add__(b) d=a+b print(c) print(d) """ pass def __and__(self, *args, **kwargs): # real signature unknown """ Return self&value. """ """ x.__and__(y) <==> x&y """ """ & 按位与运算符:参与运算的两个值, 如果两个相应位都为1,则该位的结果为1, 否则为0(其他情况都为0) """ """ a=1 b=1 c=a.__and__(b) d=a&b print(c) print(d) """ pass def __bool__(self, *args, **kwargs): # real signature unknown """ self != 0 """ """等于0返回False 其他返回True """ """ False True True """ pass def __ceil__(self, *args, **kwargs): # real signature unknown """ Ceiling of an Integral returns itself. """ pass def __divmod__(self, *args, **kwargs): # real signature unknown """ Return divmod(self, value). """ """ 返回一个元组,第一个元素为商,第二个元素为余数""" """ a=14 b=3 c=(a).__divmod__(b) print(c) """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ """ 判断两个值是否相等""" """ a=14 b=3 c=(a).__eq__(b) d=(a).__eq__(14) print(c) print(d) """ pass def __float__(self, *args, **kwargs): # real signature unknown """ float(self) """ """转换成floa型,将一个整数转换成浮点型""" """ x.__float__() <==> float(x) """ """ a=100 b=(a).__float__() print(b) """ pass def __floordiv__(self, *args, **kwargs): # real signature unknown """ Return self//value. """ """整除,保留结果的整数部分""" """a//b""" """ a=100 b=a.__floordiv__(27) c=a//27 print(b) print(c) """ pass def __floor__(self, *args, **kwargs): # real signature unknown """ Flooring an Integral returns itself. """ """返回本身""" """ a=100 b=a.__floor__() print(b) """ pass def __format__(self, *args, **kwargs): # real signature unknown """转换对象的类型""" """ a=100 b=a.__format__('f') c=a.__format__("0x") d=a.__format__("b") print(b) print(c) print(d) """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ """""" pass def __getnewargs__(self, *args, **kwargs): # real signature unknown pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __index__(self, *args, **kwargs): # real signature unknown """ Return self converted to an integer, if self is suitable for use as an index into a list. """ pass def __init__(self, x, base=10): # known special case of int.__init__ """ int([x]) -> integer int(x, base=10) -> integer Convert a number or string to an integer, or return 0 if no arguments are given. If x is a number, return x.__int__(). For floating point numbers, this truncates towards zero. If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an integer literal in the given base. The literal can be preceded by '+' or '-' and be surrounded by whitespace. The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer literal. >>> int('0b100', base=0) 4 # (copied from class doc) """ pass def __int__(self, *args, **kwargs): # real signature unknown """ int(self) """ pass def __invert__(self, *args, **kwargs): # real signature unknown """ ~self """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lshift__(self, *args, **kwargs): # real signature unknown """ Return self<>self. """ pass def __rshift__(self, *args, **kwargs): # real signature unknown """ Return self>>value. """ pass def __rsub__(self, *args, **kwargs): # real signature unknown """ Return value-self. """ pass def __rtruediv__(self, *args, **kwargs): # real signature unknown """ Return value/self. """ pass def __rxor__(self, *args, **kwargs): # real signature unknown """ Return value^self. """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Returns size in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __sub__(self, *args, **kwargs): # real signature unknown """ Return self-value. """ pass def __truediv__(self, *args, **kwargs): # real signature unknown """ Return self/value. """ pass def __trunc__(self, *args, **kwargs): # real signature unknown """ Truncating an Integral returns itself. """ pass def __xor__(self, *args, **kwargs): # real signature unknown """ Return self^value. """ pass denominator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the denominator of a rational number in lowest terms""" imag = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the imaginary part of a complex number""" numerator = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the numerator of a rational number in lowest terms""" real = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """the real part of a complex number"""