【CUDA】学习记录(2)-编程模型

CUDA编程结构

【CUDA】学习记录(2)-编程模型_第1张图片
CUDA编程

CUDA显存管理

【CUDA】学习记录(2)-编程模型_第2张图片
CPU vs GPU
  1. 分配显存
cudaError_t cudaMalloc ( void** devPtr, size_t size )
  1. 传输数据
cudaError_t cudaMemcpy ( void* dst, const void* src, size_t count,  cudaMemcpyKind  kind )
//传输方向:
cudaMemcpyHostToHost
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

Example:

  1. 返回类型
cudaSuccess
cudaErrorMemoryAllocation

CUDA内存模型

【CUDA】学习记录(2)-编程模型_第3张图片
CUDA全局内存和共享内存

线程

核函数在CPU端创立,在GPU端执行。thread组织成block,block组成grid,一个核函数对应一个grid。block可以一维,二维,三维,grid也可以是一维,二维,三维组织。


【CUDA】学习记录(2)-编程模型_第4张图片
线程模型

block:同一个block内共享内存,同一block中的thread可以彼此进行通信。
block:block-local synchronization。同一个块内的线程可以同步。
线程,可以根据blockIdx和threadIdx唯一的指定。

blockIdx (block index within a grid)
threadIdx (thread index within a block)

blockIdx和threadIdx都是GPU中的内置变量,unit3,blockIdx和threadIdx有3个维度,x,y,z。

threadIdx.x、threadIdx.y、threadIdx.z
blockIdx.x、blockIdx.y、blockIdx.z

➤ blockDim (block dimension, measured in threads)
➤ gridDim (grid dimension, measured in blocks)
另外我们要特别注意,GPU中线程的内置变量定义类型是unit3,在程序中设置block和grid的类型是dim3。dim3在CPU端使用,unit3在GPU中使用。
➤ Decide the block size.定义数据量大小
➤ Calculate the grid dimension based on the application data size and the block size.设置block的大小,再设置grid的大小。
确定block的维度的因素:
➤ Performance characteristics of the kernel(kernel的特性)
➤ Limitations on GPU resources(GPU上的资源)

example 定义block和grid

#include "../common/common.h"
#include 
#include 
/*
 * Display the dimensionality of a thread block and grid from the host and
 * device.
 */
__global__ void checkIndex(void)
{
    printf("threadIdx:(%d, %d, %d)\n", threadIdx.x, threadIdx.y, threadIdx.z);
    printf("blockIdx:(%d, %d, %d)\n", blockIdx.x, blockIdx.y, blockIdx.z);
    printf("blockDim:(%d, %d, %d)\n", blockDim.x, blockDim.y, blockDim.z);
    printf("gridDim:(%d, %d, %d)\n", gridDim.x, gridDim.y, gridDim.z);
}
int main(int argc, char **argv)
{
    // define total data element
    int nElem = 6;
    // define grid and block structure
    dim3 block(3);
    dim3 grid((nElem + block.x - 1) / block.x);
    // check grid and block dimension from host side
    printf("grid.x %d grid.y %d grid.z %d\n", grid.x, grid.y, grid.z);
    printf("block.x %d block.y %d block.z %d\n", block.x, block.y, block.z);
    // check grid and block dimension from device side
    checkIndex<<>>();
    // reset device before you leave
    CHECK(cudaDeviceReset());
    return(0);
}

launching a CUDA Kernel

kernel_name <<>>(argument list);
//根据设置的grid和block可以确定kernel的总线程数,kernel的层次结构。
【CUDA】学习记录(2)-编程模型_第5张图片
kernel_name <<<4,8>>>(argument list);

** 关键点**
1.数据在global memory中是线性存储的,我们可以根据内置变量blickIdx和threadIdx可以唯一的确定某个线程。
2.建立一种映射关系,线程和数据的映射方式。
3.kernel Call 是异步执行的,我理解的异步是kernel中的线程不是同时执行结束的,当核函数创建了以后控制权就返回到host端了。

//强制host端等待所有的线程都完成执行。
cudaError_t cudaDeviceSynchronize(void);
//注意cudaMemcpy函数是同步的,将等待kernel中所有线程都完成了执行,再执行数据的拷贝。

编写kernel函数

__global __void kernel_name(argument list)
//1. kernel返回值必须是void
//2. __global__标识符号
【CUDA】学习记录(2)-编程模型_第6张图片

The following restrictions apply for all kernels:
➤ Access to device memory only
➤ Must have void return type
➤ No support for a variable number of arguments
➤ No support for static variables
➤ No support for function pointers
➤ Exhibit an asynchronous behavior

Example:两个数组相加

#include "../common/common.h"
#include 
#include 
/*
* This example demonstrates a simple vector sum on the GPU and on the host.
* sumArraysOnGPU splits the work of the vector sum across CUDA threads on the
* GPU. Only a single thread block is used in this small case, for simplicity.
* sumArraysOnHost sequentially iterates through vector elements on the host.
*/
void checkResult(float *hostRef, float *gpuRef, const int N)
{
   double epsilon = 1.0E-8;
   bool match = 1;
   for (int i = 0; i < N; i++)
   {
       if (abs(hostRef[i] - gpuRef[i]) > epsilon)
       {
           match = 0;
           printf("Arrays do not match!\n");
           printf("host %5.2f gpu %5.2f at current %d\n", hostRef[i],
                  gpuRef[i], i);
           break;
       }
   }
   if (match) printf("Arrays match.\n\n");
   return;
}
void initialData(float *ip, int size)
{
   // generate different seed for random number
   time_t t;
   srand((unsigned) time(&t));

   for (int i = 0; i < size; i++)
   {
       ip[i] = (float)(rand() & 0xFF) / 10.0f;
   }

   return;
}
void sumArraysOnHost(float *A, float *B, float *C, const int N)
{
   for (int idx = 0; idx < N; idx++)
       C[idx] = A[idx] + B[idx];
}
__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N)
{
   int i = threadIdx.x;

   if (i < N) C[i] = A[i] + B[i];
}
int main(int argc, char **argv)
{
   printf("%s Starting...\n", argv[0]);

   // set up device
   int dev = 0;
   CHECK(cudaSetDevice(dev));

   // set up data size of vectors
   int nElem = 1 << 5;
   printf("Vector size %d\n", nElem);

   // malloc host memory
   size_t nBytes = nElem * sizeof(float);

   float *h_A, *h_B, *hostRef, *gpuRef;
   h_A     = (float *)malloc(nBytes);
   h_B     = (float *)malloc(nBytes);
   hostRef = (float *)malloc(nBytes);
   gpuRef  = (float *)malloc(nBytes);

   // initialize data at host side
   initialData(h_A, nElem);
   initialData(h_B, nElem);

   memset(hostRef, 0, nBytes);
   memset(gpuRef,  0, nBytes);

   // malloc device global memory
   float *d_A, *d_B, *d_C;
   CHECK(cudaMalloc((float**)&d_A, nBytes));
   CHECK(cudaMalloc((float**)&d_B, nBytes));
   CHECK(cudaMalloc((float**)&d_C, nBytes));

   // transfer data from host to device
   CHECK(cudaMemcpy(d_A, h_A, nBytes, cudaMemcpyHostToDevice));
   CHECK(cudaMemcpy(d_B, h_B, nBytes, cudaMemcpyHostToDevice));
   CHECK(cudaMemcpy(d_C, gpuRef, nBytes, cudaMemcpyHostToDevice));

   // invoke kernel at host side
   dim3 block (nElem);
   dim3 grid  (1);

   sumArraysOnGPU<<>>(d_A, d_B, d_C, nElem);
   printf("Execution configure <<<%d, %d>>>\n", grid.x, block.x);

   // copy kernel result back to host side
   CHECK(cudaMemcpy(gpuRef, d_C, nBytes, cudaMemcpyDeviceToHost));

   // add vector at host side for result checks
   sumArraysOnHost(h_A, h_B, hostRef, nElem);

   // check device results
   checkResult(hostRef, gpuRef, nElem);

   // free device global memory
   CHECK(cudaFree(d_A));
   CHECK(cudaFree(d_B));
   CHECK(cudaFree(d_C));

   // free host memory
   free(h_A);
   free(h_B);
   free(hostRef);
   free(gpuRef);

   CHECK(cudaDeviceReset());
   return(0);
}
Paste_Image.png
__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;

    if (i < N) C[i] = A[i] + B[i];
}

linux 计算kernel的运行时间

#include 
double cpuSeconds()
{
    struct timeval tp;
    gettimeofday(&tp, NULL);
    return ((double)tp.tv_sec + (double)tp.tv_usec * 1.e-6);
}
//计算kernel的时间
double iStart = cpuSecond();
kernel_name<<>>(argument list);
cudaDeviceSynchronize();
double iElaps = cpuSecond() - iStart;

Timing with nvprof

$ nvprof [nvprof_args]  [application_args]
$ nvprof --help
$ nvprof ./sumArraysOnGPU-timer
//我的电脑Ubuntu16.04+CUDA8.0报错:
Error:unified memory profiling failed.
//为什么会出现这种情况我还不清楚,但是可以做如下处理
$ nvprof --unified-memory-profiling off ./sumArraysOnGPU-timer

线程的组织形式

不同的block和grid会对kernel性能有很大的影响,下面以矩阵相加为例。
① 以2D的grid和2D的block组织线程,每个thread处理一个数据。
通常而言,矩阵中的元素是线性存储的,是以行为主进行线性的存储。


matrix[6][8]

在一个kernel函数中,可以采用一个thread处理一个位置的元素相加。首先要考虑如下3个问题:
➤线程的索引和块索引
➤矩阵中给定点的坐标
➤线性全局存储器中的偏移量
对于给定的线程,您可以从块索引和线程索引中获取全局内存中的偏移量
将线程索和块索引映射到矩阵中的坐标,然后映射这些矩阵
坐标到全局内存位置。
➤1.将线程索引和块索引映射到矩阵中的坐标。


【CUDA】学习记录(2)-编程模型_第7张图片
Paste_Image.png
ix=threadIdx.x+blockIdx.x*blockDim.x
iy=threadIdx.y+blockIdx.y*blockDim.y

➤2.根据矩阵中的坐标计算偏移量(行为主)

idx=ix*nx+iy

【CUDA】学习记录(2)-编程模型_第8张图片
Paste_Image.png

注意:这里的x指的是横坐标,y指的纵坐标,一定要和矩阵的行列区分开来
➤3.设置block和grid

dim3 blcok(32,32);
dim3 grid((nx+block.x-1)/block.x,(ny+block.y-1)/block.y);
sumMatrixOnGPU2D<<>>(d_MatA, d_MatB, d_MatC, nx, ny)
__global__ void sumMatrixOnGPU2D(float *MatA, float *MatB, float *MatC,
int nx, int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.x;
unsigned int iy = threadIdx.y + blockIdx.y * blockDim.y;
unsigned int idx = iy*nx + ix;
if (ix < nx && iy < ny)
MatC[idx] = MatA[idx] + MatB[idx];
}

②1D的grid和1D的block,,每个thread处理多个数据。
如果grid和block都是一维的,但是grid和block每一维有最大的限制,当数据量比较大时,一个线程不能只处理一个数据,可以一个线程处理多个数据。比如可以将一个线程处理ny个数据。


【CUDA】学习记录(2)-编程模型_第9张图片
Paste_Image.png
dim3 blcok(32,1);
dim3 grid((nx+block.x-1)/block.x,1);
__global__ void sumMatrixOnGPU1D(float *MatA, float *MatB, float *MatC,int nx, int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.x;
if (ix < nx ) {
  for (int iy=0; iy

③2D的grid和1D的block,每个thread处理一个数据。


【CUDA】学习记录(2)-编程模型_第10张图片
Paste_Image.png
ix=threadIdx.x+blockIdx.x*blockDim.x;
iy=blockIdx.y;
__global__ void sumMatrixOnGPUMix(float *MatA, float *MatB, float *MatC,int nx, int ny) 
{
    unsigned int ix = threadIdx.x + blockIdx.x * blockDim.x;
    unsigned int iy = blockIdx.y;
    unsigned int idx = iy*nx + ix;
    if (ix < nx && iy < ny)
    MatC[idx] = MatA[idx] + MatB[idx];
}

查询GPU设备信息

➤ CUDA runtime API functions

cudaGetDeviceProperties(cudaDeviceProp*prop,int device);

➤ nvidia-smi

你可能感兴趣的:(【CUDA】学习记录(2)-编程模型)