一、QuerySet的特点
1.可切片
使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。
1
|
>>> Entry.objects.
all
()[:5] # (LIMIT 5)
|
>>> Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)
不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。
2.可迭代
articleList=models.Article.objects.all()
for article in articleList: print(article.title)
3.惰性查询
查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。
1
2
3
4
5
6
|
queryResult=models.Article.objects.
all
() #
not
hits
database
print(queryResult) # hits
database
for
article
in
queryResult:
print(article.title) # hits
database
|
一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。
4.缓存机制
每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。
在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。
请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:
1
2
|
print([a.title
for
a
in
models.Article.objects.
all
()])
print([a.create_time
for
a
in
models.Article.objects.
all
()])
|
这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:
1
2
3
|
queryResult=models.Article.objects.
all
()
print([a.title
for
a
in
queryResult])
print([a.create_time
for
a
in
queryResult])
|
何时查询集不会被缓存?
查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。
例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:
1
2
3
|
>>> queryset
=
Entry.objects.
all
()
>>>
print
queryset[
5
]
# Queries the database
>>>
print
queryset[
5
]
# Queries the database again
|
然而,如果已经对全部查询集求值过,则将检查缓存:
from blog import models ret = models.Article.objects.all() for i in ret: print(i.title) for j in ret: print(j.desc) #查询一次
for i in models.Article.objects.all(): print(i) for j in models.Article.objects.all(): print(j) # 查询两次
>>> queryset
=
Entry.objects.
all
()
>>> [entry
for
entry
in
queryset]
# Queries the database
>>>
print
queryset[
5
]
# Uses cache
>>>
print
queryset[
4
]
# Uses cache
下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:
1
2
3
4
|
>>> [entry
for
entry
in
queryset]
>>>
bool
(queryset)
>>> entry
in
queryset
>>>
list
(queryset)
|
注:简单地打印查询集不会填充缓存。
queryResult=models.Article.objects.all() print(queryResult) # hits database print(queryResult) # hits database 查询两次
备注:if queryResult 也会查询SQL。
exists()与iterator()方法
exists:
简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:
if queryResult.exists():
#SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
print("exists...")
备注:如果用于判断有没有值,可以使用if queryset,这样会查询出所有的数据再做判断有没有值,这样做的弊端是当数据量很大时,就会全部放到内存中,我们应该避免这样用,可以使用 if queryset.exists(): 这种用法好处时,执行SQL时会只查询一条(limit 1),从而可以解决数据量大的问题。
iterator:
当queryset非常巨大时,cache会成为问题。
处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。
objs = Book.objects.all().iterator() # 得到一个生成器 generator
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs: print(obj.title) #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了 for obj in objs: print(obj.title)
当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。
总结:
queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。
中介模型
处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField 就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。
例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。
对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from
django.db
import
models
class
Person(models.Model):
name
=
models.CharField(max_length
=
128
)
def
__str__(
self
):
# __unicode__ on Python 2
return
self
.name
class
Group(models.Model):
name
=
models.CharField(max_length
=
128
)
members
=
models.ManyToManyField(Person, through
=
'Membership'
)
def
__str__(
self
):
# __unicode__ on Python 2
return
self
.name
class
Membership(models.Model):
person
=
models.ForeignKey(Person)
group
=
models.ForeignKey(Group)
date_joined
=
models.DateField()
invite_reason
=
models.CharField(max_length
=
64
)
|
既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
>>> ringo
=
Person.objects.create(name
=
"Ringo Starr"
)
>>> paul
=
Person.objects.create(name
=
"Paul McCartney"
)
>>> beatles
=
Group.objects.create(name
=
"The Beatles"
)
>>> m1
=
Membership(person
=
ringo, group
=
beatles,
... date_joined
=
date(
1962
,
8
,
16
),
... invite_reason
=
"Needed a new drummer."
)
>>> m1.save()
>>> beatles.members.
all
()
[
>>> ringo.group_set.
all
()
[
>>> m2
=
Membership.objects.create(person
=
paul, group
=
beatles,
... date_joined
=
date(
1960
,
8
,
1
),
... invite_reason
=
"Wanted to form a band."
)
>>> beatles.members.
all
()
[
|
与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members = [...])来创建关系:
1
2
3
4
5
6
|
# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name
=
"George Harrison"
)
# AND NEITHER WILL THIS
>>> beatles.members
=
[john, paul, ringo, george]
|
为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的add、create 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。
remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:
1
2
3
4
5
|
>>>
# Beatles have broken up
>>> beatles.members.clear()
>>>
# Note that this deletes the intermediate model instances
>>> Membership.objects.
all
()
[]
|
查询优化
表数据
class UserInfo(AbstractUser): """ 用户信息 """ nid = models.BigAutoField(primary_key=True) nickname = models.CharField(verbose_name='昵称', max_length=32) telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name='手机号码') avatar = models.FileField(verbose_name='头像',upload_to = 'avatar/',default="/avatar/default.png") create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) fans = models.ManyToManyField(verbose_name='粉丝们', to='UserInfo', through='UserFans', related_name='f', through_fields=('user', 'follower')) def __str__(self): return self.username class UserFans(models.Model): """ 互粉关系表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey(verbose_name='博主', to='UserInfo', to_field='nid', related_name='users') follower = models.ForeignKey(verbose_name='粉丝', to='UserInfo', to_field='nid', related_name='followers') class Blog(models.Model): """ 博客信息 """ nid = models.BigAutoField(primary_key=True) title = models.CharField(verbose_name='个人博客标题', max_length=64) site = models.CharField(verbose_name='个人博客后缀', max_length=32, unique=True) theme = models.CharField(verbose_name='博客主题', max_length=32) user = models.OneToOneField(to='UserInfo', to_field='nid') def __str__(self): return self.title class Category(models.Model): """ 博主个人文章分类表 """ nid = models.AutoField(primary_key=True) title = models.CharField(verbose_name='分类标题', max_length=32) blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article(models.Model): nid = models.BigAutoField(primary_key=True) title = models.CharField(max_length=50, verbose_name='文章标题') desc = models.CharField(max_length=255, verbose_name='文章描述') read_count = models.IntegerField(default=0) comment_count= models.IntegerField(default=0) up_count = models.IntegerField(default=0) down_count = models.IntegerField(default=0) category = models.ForeignKey(verbose_name='文章类型', to='Category', to_field='nid', null=True) create_time = models.DateField(verbose_name='创建时间') blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') tags = models.ManyToManyField( to="Tag", through='Article2Tag', through_fields=('article', 'tag'), ) class ArticleDetail(models.Model): """ 文章详细表 """ nid = models.AutoField(primary_key=True) content = models.TextField(verbose_name='文章内容', ) article = models.OneToOneField(verbose_name='所属文章', to='Article', to_field='nid') class Comment(models.Model): """ 评论表 """ nid = models.BigAutoField(primary_key=True) article = models.ForeignKey(verbose_name='评论文章', to='Article', to_field='nid') content = models.CharField(verbose_name='评论内容', max_length=255) create_time = models.DateTimeField(verbose_name='创建时间', auto_now_add=True) parent_comment = models.ForeignKey('self', blank=True, null=True, verbose_name='父级评论') user = models.ForeignKey(verbose_name='评论者', to='UserInfo', to_field='nid') up_count = models.IntegerField(default=0) def __str__(self): return self.content class ArticleUpDown(models.Model): """ 点赞表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey('UserInfo', null=True) article = models.ForeignKey("Article", null=True) models.BooleanField(verbose_name='是否赞') class CommentUp(models.Model): """ 点赞表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey('UserInfo', null=True) comment = models.ForeignKey("Comment", null=True) class Tag(models.Model): nid = models.AutoField(primary_key=True) title = models.CharField(verbose_name='标签名称', max_length=32) blog = models.ForeignKey(verbose_name='所属博客', to='Blog', to_field='nid') class Article2Tag(models.Model): nid = models.AutoField(primary_key=True) article = models.ForeignKey(verbose_name='文章', to="Article", to_field='nid') tag = models.ForeignKey(verbose_name='标签', to="Tag", to_field='nid')
select_related
简单使用
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。
select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。
简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。
下面的例子解释了普通查询和select_related() 查询的区别。
查询id=2的文章的分类名称,下面是一个标准的查询:
1
2
3
4
5
|
# Hits the database.
article
=
models.Article.objects.get(nid
=
2
)
# Hits the database again to get the related Blog object.
print
(article.category.title)
|
SELECT "blog_article"."nid", "blog_article"."title", "blog_article"."desc", "blog_article"."read_count", "blog_article"."comment_count", "blog_article"."up_count", "blog_article"."down_count", "blog_article"."category_id", "blog_article"."create_time", "blog_article"."blog_id", "blog_article"."article_type_id" FROM "blog_article" WHERE "blog_article"."nid" = 2; args=(2,) SELECT "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id" FROM "blog_category" WHERE "blog_category"."nid" = 4; args=(4,)
如果我们使用select_related()函数:
1
2
3
4
5
6
7
|
articleList=models.Article.objects.select_related(
"category"
).
all
()
for
article_obj
in
articleList:
# Doesn't hit the
database
, because article_obj.category
# has been prepopulated
in
the previous query.
print(article_obj.category.title)
|
SELECT "blog_article"."nid", "blog_article"."title", "blog_article"."desc", "blog_article"."read_count", "blog_article"."comment_count", "blog_article"."up_count", "blog_article"."down_count", "blog_article"."category_id", "blog_article"."create_time", "blog_article"."blog_id", "blog_article"."article_type_id", "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");
多外键查询
这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:
1
2
|
article=models.Article.objects.select_related(
"category"
).get(nid=1)
print(article.articledetail)
|
观察logging结果,发现依然需要查询两次,所以需要改为:
1
2
|
article=models.Article.objects.select_related(
"category"
,
"articledetail"
).get(nid=1)
print(article.articledetail)
|
或者:
article=models.Article.objects
.select_related("category")
.select_related("articledetail")
.get(nid=1) # django 1.7 支持链式操作
print(article.articledetail)
SELECT "blog_article"."nid", "blog_article"."title", ...... "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id", "blog_articledetail"."nid", "blog_articledetail"."content", "blog_articledetail"."article_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid") LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id") WHERE "blog_article"."nid" = 1; args=(1,)
深层查询
1
2
3
4
|
# 查询id=1的文章的用户姓名
article=models.Article.objects.select_related(
"blog"
).get(nid=1)
print(article.blog.
user
.username)
|
依然需要查询两次:
SELECT "blog_article"."nid", "blog_article"."title", ...... "blog_blog"."nid", "blog_blog"."title", FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid") WHERE "blog_article"."nid" = 1; SELECT "blog_userinfo"."password", "blog_userinfo"."last_login", ...... FROM "blog_userinfo" WHERE "blog_userinfo"."nid" = 1;
这是因为第一次查询没有query到userInfo表,所以,修改如下:
1
2
|
article=models.Article.objects.select_related(
"blog__user"
).get(nid=1)
print(article.blog.
user
.username)
|
SELECT "blog_article"."nid", "blog_article"."title", ...... "blog_blog"."nid", "blog_blog"."title", ...... "blog_userinfo"."password", "blog_userinfo"."last_login", ...... FROM "blog_article" INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid") INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid") WHERE "blog_article"."nid" = 1;
总结
- select_related主要针一对一和多对一关系进行优化。
- select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
- 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
- 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
- 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
- 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
- Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
prefetch_related()
对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。
prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。
prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。
1
2
3
4
5
|
# 查询所有文章关联的所有标签
article_obj=models.Article.objects.
all
()
for
i
in
article_obj:
print(i.tags.
all
()) #4篇文章: hits
database
5
|
改为prefetch_related:
1
2
3
4
5
|
# 查询所有文章关联的所有标签
article_obj=models.Article.objects.prefetch_related(
"tags"
).
all
()
for
i
in
article_obj:
print(i.tags.
all
()) #4篇文章: hits
database
2
|
SELECT "blog_article"."nid", "blog_article"."title", ...... FROM "blog_article"; SELECT ("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id", "blog_tag"."nid", "blog_tag"."title", "blog_tag"."blog_id" FROM "blog_tag" INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id") WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);
extra
extra(select=None, where=None, params=None,
tables=None, order_by=None, select_params=None)
有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句
extra可以指定一个或多个 参数,例如 select, where or tables. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做
参数之select
The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。
queryResult=models.Article
.objects.extra(select={'is_recent': "create_time > '2017-09-05'"})
结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.
练习:
# in sqlite:
article_obj=models.Article.objects
.filter(nid=1)
.extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
.values("standard_time","nid","title") print(article_obj) # [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>
参数之where / tables
您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。
where和tables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。
举例来讲:
queryResult=models.Article
.objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])
整体插入
创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:
Entry.objects.bulk_create([
Entry(headline="Python 3.0 Released"),
Entry(headline="Python 3.1 Planned")
])
...更优于:
Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")
注意该方法有很多注意事项,所以确保它适用于你的情况。
这也可以用在ManyToManyFields中,所以:
my_band.members.add(me, my_friend)
...更优于:
my_band.members.add(me)
my_band.members.add(my_friend)
...其中Bands和Artists具有多对多关联。