二叉树的遍历 递归 非递归 Java

二叉树的常用遍历算法实现

二叉树的遍历 递归 非递归 Java_第1张图片
二叉树的形状.png

首先定义 二叉树,节点值,左子节点,右子节点

public class TreeNode {
    private int value;
    private TreeNode left;
    private TreeNode right;
    public TreeNode(int value) {
        this.value = value;
    }
}

前序遍历

  • 递归实现
public static void preOrder(TreeNode treeNode) {
    if (treeNode != null) {
        System.out.print(treeNode.value + " ");
        preOrder(treeNode.left);
        preOrder(treeNode.right);
    }
}
  • 非递归实现(1)
    • 这个是常规思路,先遍历到根节点,并打印、压栈,然后遍历其左子节点,打印、压栈。
    • 若左子节点已经是叶子节点,则 while 循环结束,开始从栈中弹出根节点,并访问根节点的右子树,直到栈为空,则遍历结束。
public static void preOrderStack(TreeNode treeNode) {

    if (treeNode == null) {
        return;
    }
    Stack stack = new Stack();
    TreeNode root = treeNode;
    
    while (root != null || !stack.isEmpty()) {
        while (root != null) {
            //  注意和 中序非递归的区别,这里是先打印节点值,再去加入栈中
            System.out.print(root.value + " ");
            stack.push(root);
            root = root.left;
        }
        if (!stack.isEmpty()) {
            root = stack.pop();
            root = root.right;
        }
    }
}
  • 非递归实现(2)
    • 这里的思路是利用栈先进后出的性质, 先将根节点入栈
    • 循环中,弹出根节点,然后先加入右子节点,后加入左子节点
    • 再一次循环,新弹出的节点就是刚压入的左子节点
public static void preOrderStack1(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    Stack stack = new Stack();
    stack.push(treeNode);
    while (!stack.isEmpty()) {
        TreeNode root = stack.pop();
        System.out.print(root.value + " ");
        if (root.right != null) {
            stack.push(root.right);
        }
        if (root.left != null) {
            stack.push(root.left);
        }
    }
}

中序遍历

  • 递归实现
public static void midOrder(TreeNode treeNode) {
    if (treeNode != null) {
        midOrder(treeNode.left);
        System.out.print(treeNode.value + " ");
        midOrder(treeNode.right);
    }
}
  • 非递归实现
    • 中序遍历是 左 根 右
public static void midOrderStack(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    Stack stack = new Stack();
    while (treeNode != null || !stack.isEmpty()) {
        while (treeNode != null) {
            stack.push(treeNode);
            treeNode = treeNode.left;
        }
        if (!stack.isEmpty()) {
            treeNode = stack.pop();
            System.out.print(treeNode.value + " ");
            treeNode = treeNode.right;
        }
    }
}

后序遍历

  • 递归实现
public static void postOrder(TreeNode treeNode) {
    if (treeNode != null) {
        postOrder(treeNode.left);
        postOrder(treeNode.right);
        System.out.print(treeNode.value + " ");
    }
}
  • 非递归实现
    • 由于后序遍历二叉树的顺序是 左 右 根,故可以使用中间临时栈保存 根 右 左 的遍历结果
public static void postOrderStack(TreeNode treeNode) {
    Stack stack = new Stack();
    Stack stack1 = new Stack();
    while (treeNode != null || !stack.isEmpty()) {
        while (treeNode != null) {
            stack.push(treeNode);
            stack1.push(treeNode);
            treeNode = treeNode.right;
        }
        if (!stack.isEmpty()) {
            treeNode = stack.pop();
            treeNode = treeNode.left;
        }
    }
    while (!stack1.isEmpty()) {
        TreeNode treeNode1 = stack1.pop();
        System.out.print(treeNode1.value + " ");
    }
}

层次遍历

public static void levelOrder(TreeNode treeNode) {
    if (treeNode == null) {
        return;
    }
    Queue queue = new LinkedList<>();
    queue.add(treeNode);
    while (!queue.isEmpty()) {
        TreeNode root = queue.poll();
        System.out.print(root.value + " ");

        if (root.left != null) {
            queue.add(root.left);
        }
        if (root.right != null) {
            queue.add(root.right);
        }
    }
}

“之” 字型遍历

public static void printZ(TreeNode treeNode){
    if (treeNode == null){
        return;
    }
    Stack stack1 = new Stack<>();
    Stack stack2 = new Stack<>();
    stack1.push(treeNode);
    boolean flag = true;
    while (!stack1.isEmpty() || !stack2.isEmpty()){
        if (flag){
            while (!stack1.isEmpty()) {
                treeNode = stack1.pop();
                System.out.print(treeNode.value+" ");
                if (treeNode.left != null) {
                    stack2.add(treeNode.left);
                }
                if (treeNode.right != null) {
                    stack2.add(treeNode.right);
                }
            }
        }else {
            while (!stack2.isEmpty()) {
                treeNode = stack2.pop();
                System.out.print(treeNode.value+" ");
                if (treeNode.right != null) {
                    stack1.add(treeNode.right);
                }
                if (treeNode.left != null) {
                    stack1.add(treeNode.left);
                }
            }
        }
        flag = flag ^ true;
    }
}

求最大深度

  • 递归实现
public static int getDepth(TreeNode treeNode) {
    if (treeNode == null) {
        return 0;
    }
    int left = getDepth(treeNode.left);
    int right = getDepth(treeNode.right);
    return left > right ? left + 1 : right + 1;
}
  • 非递归实现
public static void getDepth1(TreeNode treeNode){
    if (treeNode == null){
        return;
    }
    Queue queue = new LinkedList<>();
    queue.add(treeNode);
    int depth = 0;
    while (!queue.isEmpty()){
        int size = queue.size();
        while (size > 0){
            treeNode = queue.poll();
            if (treeNode.left != null){
                queue.add(treeNode.left);
            }
            if (treeNode.right != null){
                queue.add(treeNode.right);
            }
            size--;
        }
        depth++;
    }
    System.out.println(depth);
}

求最大宽度

  • 对于二叉树,每一层的节点数是不一样的,计算二叉树中具有结点数最多的那一层的结点个数
    用队列实现,实质就是当当前层节点弹出,加入下一层节点
public static void getWidth(TreeNode treeNode) {
    // 根节点为空,则 最大宽度为 0 ;
    if (treeNode == null) {
        return;
    }
    // 此时根节点入队,最大宽度为 1 
    int max = 1;
    Queue queue = new LinkedList<>();
    queue.add(treeNode);

    // 注意循环条件:队列不为空
    while (!queue.isEmpty()) {
        // 记录当前层的节点数
        int size = queue.size();  

        // 把当前层的所有节点依次弹出,循环结束时,当前层节点会全部弹出,此时队列中只包含下一层的所有节点
        while (size > 0) {   

            treeNode = queue.poll();
            size--;

            // 弹出的同时把下一层的节点加入队列中
            if (treeNode.left != null) {
                queue.add(treeNode.left);   
            }
            if (treeNode.right != null) {
                queue.add(treeNode.right);
            }
        }
       // 此时队列中存放的是下一层的所有节点,比较它与上一层节点的个数,保存较大值
        if (max < queue.size()) {
            max = queue.size();
        }
    }
    System.out.println(max);
}

数组列表实现求最大宽度,类比队列,用两个指针 i,j。i 指向当前层节点第一个,j 指向当前层最后一个。弹出时 i++ ,加入元素时 j++;

public static void levelOrder(TreeNode treeNode){
    if (treeNode == null){
        return;
    }
    List list = new ArrayList();
    list.add(treeNode);
    int max = 1;
    int i =0;
    int j = 0;
    // i,j 最多相等,遍历到最后一个元素时,i = j ,此时 i 节点左右子节点为空,下一步 i 将 大于 j ,循环结束
    while (i <= j){
        // 临时保存当前层的节点数
        int size = j-i+1;
        while (size > 0){
            treeNode = list.get(i);
            if (treeNode.left != null){
                list.add(treeNode.left);
                j++;
            }
            if (treeNode.right != null){
                list.add(treeNode.right);
                j++;
            }
            size--;
            i++;
        }
        if (max < j-i+1){
            max = j-i+1;
        }
    }
    System.out.println(max);
}

你可能感兴趣的:(二叉树的遍历 递归 非递归 Java)