Hadoop总结篇之三---一个Job到底被提交到哪去了

我们会定义Job,我们会定义map和reduce程序。那么,这个Job到底是怎么提交的?提交到哪去了?它到底和集群怎么进行交互的呢?

这篇文章将从头讲起。

开发hadoop的程序时,一共有三大块,也就是Driver、map、reduce,在Driver中,我们要定义Configuration,定义Job,在mian方法最后,往往会以这么一段代码结尾:

if (!job.waitForCompletion(true))
			return;

而这句的作用,就是提交了我们的Job。进入代码里(其实就是Job类)我们可以看到具体实现:

public boolean waitForCompletion(boolean verbose
                                   ) throws IOException, InterruptedException,
                                            ClassNotFoundException {
    if (state == JobState.DEFINE) {
//这句是重点,提交。那么从代码里看出这个似乎是异步提交啊,否则后面的监测怎么执行呢?我们拭目以待
      submit();
    }
    if (verbose) {
      monitorAndPrintJob();
    } else {
      // get the completion poll interval from the client.
     //从配置里取得轮训的间隔时间,来分析当前job是否执行完毕
      int completionPollIntervalMillis = 
        Job.getCompletionPollInterval(cluster.getConf());
      while (!isComplete()) {
        try {
          Thread.sleep(completionPollIntervalMillis);
        } catch (InterruptedException ie) {
        }
      }
    }
    return isSuccessful();
  }

  依然在Job.class里,这个方法主要动作有二,一是找到集群,二是讲Job提交到集群

 public void submit() 
         throws IOException, InterruptedException, ClassNotFoundException {
    ensureState(JobState.DEFINE);
    setUseNewAPI();
   //连接集群/master
    connect();
  //构造提交器
    final JobSubmitter submitter = 
        getJobSubmitter(cluster.getFileSystem(), cluster.getClient());
    status = ugi.doAs(new PrivilegedExceptionAction() {
      public JobStatus run() throws IOException, InterruptedException, 
      ClassNotFoundException {
      //提交
        return submitter.submitJobInternal(Job.this, cluster);
      }
    });
    state = JobState.RUNNING;
    LOG.info("The url to track the job: " + getTrackingURL());
   }

  我们继续往下看,看下提交的时候都做了什么?

JobStatus submitJobInternal(Job job, Cluster cluster)
			throws ClassNotFoundException, InterruptedException, IOException {

		// 检查输出目录合法性(已存在?没指定?),这就是为什么每次提交作业,总是这个 错比较靠前的报出来
		checkSpecs(job);

		Configuration conf = job.getConfiguration();
		// 将框架提交到集群缓存(具体左右还未知?)
		addMRFrameworkToDistributedCache(conf);

		// 获得登录区,用以存放作业执行过程中用到的文件,默认位置/tmp/hadoop-yarn/staging/root/.staging
		// ,可通过yarn.app.mapreduce.am.staging-dir修改
		Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
		// configure the command line options correctly on the submitting dfs
		// 这是获取和设置提交job机器的地址和主机名
		InetAddress ip = InetAddress.getLocalHost();
		if (ip != null) {
			submitHostAddress = ip.getHostAddress();
			submitHostName = ip.getHostName();
			conf.set(MRJobConfig.JOB_SUBMITHOST, submitHostName);
			conf.set(MRJobConfig.JOB_SUBMITHOSTADDR, submitHostAddress);
		}
		// 取得当前Job的ID(后面详细关注此处)
		JobID jobId = submitClient.getNewJobID();
		job.setJobID(jobId);
		// 作业提交目录
		Path submitJobDir = new Path(jobStagingArea, jobId.toString());
		JobStatus status = null;
		try {
			conf.set(MRJobConfig.USER_NAME, UserGroupInformation.getCurrentUser().getShortUserName());
			conf.set("hadoop.http.filter.initializers",
					"org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer");
			conf.set(MRJobConfig.MAPREDUCE_JOB_DIR, submitJobDir.toString());
			LOG.debug("Configuring job " + jobId + " with " + submitJobDir + " as the submit dir");
			// get delegation token for the dir
			TokenCache.obtainTokensForNamenodes(job.getCredentials(), new Path[] { submitJobDir }, conf);

			populateTokenCache(conf, job.getCredentials());

			// generate a secret to authenticate shuffle transfers
			if (TokenCache.getShuffleSecretKey(job.getCredentials()) == null) {
				KeyGenerator keyGen;
				try {

					int keyLen = CryptoUtils.isShuffleEncrypted(conf)
							? conf.getInt(MRJobConfig.MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS,
									MRJobConfig.DEFAULT_MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS)
							: SHUFFLE_KEY_LENGTH;
					keyGen = KeyGenerator.getInstance(SHUFFLE_KEYGEN_ALGORITHM);
					keyGen.init(keyLen);
				} catch (NoSuchAlgorithmException e) {
					throw new IOException("Error generating shuffle secret key", e);
				}
				SecretKey shuffleKey = keyGen.generateKey();
				TokenCache.setShuffleSecretKey(shuffleKey.getEncoded(), job.getCredentials());
			}
			// 从本地copy文件到hdfs,比如我们提交的wordcount.jar
			copyAndConfigureFiles(job, submitJobDir);

			Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir);

			// Create the splits for the job,其实也就是确定了map的数量
			LOG.debug("Creating splits at " + jtFs.makeQualified(submitJobDir));
			int maps = writeSplits(job, submitJobDir);
			conf.setInt(MRJobConfig.NUM_MAPS, maps);
			LOG.info("number of splits:" + maps);

			// write "queue admins of the queue to which job is being submitted"
			// to job file.
			String queue = conf.get(MRJobConfig.QUEUE_NAME, JobConf.DEFAULT_QUEUE_NAME);
			AccessControlList acl = submitClient.getQueueAdmins(queue);
			conf.set(toFullPropertyName(queue, QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString());

			// removing jobtoken referrals before copying the jobconf to HDFS
			// as the tasks don't need this setting, actually they may break
			// because of it if present as the referral will point to a
			// different job.
			TokenCache.cleanUpTokenReferral(conf);

			if (conf.getBoolean(MRJobConfig.JOB_TOKEN_TRACKING_IDS_ENABLED,
					MRJobConfig.DEFAULT_JOB_TOKEN_TRACKING_IDS_ENABLED)) {
				// Add HDFS tracking ids
				ArrayList trackingIds = new ArrayList();
				for (Token t : job.getCredentials().getAllTokens()) {
					trackingIds.add(t.decodeIdentifier().getTrackingId());
				}
				conf.setStrings(MRJobConfig.JOB_TOKEN_TRACKING_IDS,
						trackingIds.toArray(new String[trackingIds.size()]));
			}

			// Set reservation info if it exists
			ReservationId reservationId = job.getReservationId();
			if (reservationId != null) {
				conf.set(MRJobConfig.RESERVATION_ID, reservationId.toString());
			}
			// Write job file to submit dir
			writeConf(conf, submitJobFile);

			//
			// Now, actually submit the job (using the submit name)
			//
			printTokens(jobId, job.getCredentials());
              //提交!!!!!!!! status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials()); if (status != null) { return status; } else { throw new IOException("Could not launch job"); } } finally { if (status == null) { LOG.info("Cleaning up the staging area " + submitJobDir); if (jtFs != null && submitJobDir != null) jtFs.delete(submitJobDir, true); } } }

  那么这个最终提交用到的submitClient是哪来的?他是怎么定义的?

它是上文提到的,连接集群的时候创建的。这个集群定义了很多信息:客户端信息、用户组信息、文件系统信息,配置信息,历史job目录,系统目录等。其中客户端信息,提供了初始化方法,如下:

public Cluster(InetSocketAddress jobTrackAddr, Configuration conf) 
      throws IOException {
    this.conf = conf;
    this.ugi = UserGroupInformation.getCurrentUser();
//初始化是重点
    initialize(jobTrackAddr, conf);
  }

  具体看下初始化过程:

private void initialize(InetSocketAddress jobTrackAddr, Configuration conf)
      throws IOException {

    synchronized (frameworkLoader) {
      for (ClientProtocolProvider provider : frameworkLoader) {
        LOG.debug("Trying ClientProtocolProvider : "
            + provider.getClass().getName());
  //根据配置,创建客户端协议提供者 ClientProtocol clientProtocol = null; try { if (jobTrackAddr == null) {
  //提供者返回的是一个具体的协议 clientProtocol = provider.create(conf); } else { clientProtocol = provider.create(jobTrackAddr, conf); } if (clientProtocol != null) { clientProtocolProvider = provider;
  //看到没?协议是什么?协议其实就是个类,里面封装了一些约定好的属性,以及操作这些属性的方法。实例化为对象后,就是一个可用于通信的客户端 client = clientProtocol; LOG.debug("Picked " + provider.getClass().getName() + " as the ClientProtocolProvider"); break; } else { LOG.debug("Cannot pick " + provider.getClass().getName() + " as the ClientProtocolProvider - returned null protocol"); } } catch (Exception e) { LOG.info("Failed to use " + provider.getClass().getName() + " due to error: " + e.getMessage()); } } } if (null == clientProtocolProvider || null == client) { throw new IOException( "Cannot initialize Cluster. Please check your configuration for " + MRConfig.FRAMEWORK_NAME + " and the correspond server addresses."); } }

  创建客户端协议提供者,用java.util.ServiceLoader,目前包含两个具体实现,LocalClientProtocolProvider(本地作业) YarnClientProtocolProvider(Yarn作业),此处会根据mapreduce.framework.name的配置选择使用哪个创建相应的客户端。

而YarnClientProtocolProvider的本质是创建了一个YarnRunner对象

 public ClientProtocol create(Configuration conf) throws IOException {
    if (MRConfig.YARN_FRAMEWORK_NAME.equals(conf.get(MRConfig.FRAMEWORK_NAME))) {
      return new YARNRunner(conf);
    }
    return null;
  }

  YarnRunner对象是干什么的?根据注释解释,是让当前JobClient在yarn上运行的。提供一些提交Job啊,杀死Job之类的方法。它实现了ClientProtocol接口,上面讲的提交的最后一步,其实最终就是调用了YarnRunner的submitJob方法。

它里面封装了ResourceMgrDelegate委托,委托的方法正是YarnClient类里的提交方法submitApplication。这样,当前作业(Application)提交过程,走到了YarnClient阶段。

总结:Job目前提交到了YarnClient实例中。那么YarnClient接下来怎么处理呢?

 

你可能感兴趣的:(Hadoop总结篇之三---一个Job到底被提交到哪去了)