我们会定义Job,我们会定义map和reduce程序。那么,这个Job到底是怎么提交的?提交到哪去了?它到底和集群怎么进行交互的呢?
这篇文章将从头讲起。
开发hadoop的程序时,一共有三大块,也就是Driver、map、reduce,在Driver中,我们要定义Configuration,定义Job,在mian方法最后,往往会以这么一段代码结尾:
if (!job.waitForCompletion(true)) return;
而这句的作用,就是提交了我们的Job。进入代码里(其实就是Job类)我们可以看到具体实现:
public boolean waitForCompletion(boolean verbose ) throws IOException, InterruptedException, ClassNotFoundException { if (state == JobState.DEFINE) { //这句是重点,提交。那么从代码里看出这个似乎是异步提交啊,否则后面的监测怎么执行呢?我们拭目以待 submit(); } if (verbose) { monitorAndPrintJob(); } else { // get the completion poll interval from the client. //从配置里取得轮训的间隔时间,来分析当前job是否执行完毕 int completionPollIntervalMillis = Job.getCompletionPollInterval(cluster.getConf()); while (!isComplete()) { try { Thread.sleep(completionPollIntervalMillis); } catch (InterruptedException ie) { } } } return isSuccessful(); }
依然在Job.class里,这个方法主要动作有二,一是找到集群,二是讲Job提交到集群
public void submit() throws IOException, InterruptedException, ClassNotFoundException { ensureState(JobState.DEFINE); setUseNewAPI(); //连接集群/master connect(); //构造提交器 final JobSubmitter submitter = getJobSubmitter(cluster.getFileSystem(), cluster.getClient()); status = ugi.doAs(new PrivilegedExceptionAction() { public JobStatus run() throws IOException, InterruptedException, ClassNotFoundException { //提交 return submitter.submitJobInternal(Job.this, cluster); } }); state = JobState.RUNNING; LOG.info("The url to track the job: " + getTrackingURL()); }
我们继续往下看,看下提交的时候都做了什么?
JobStatus submitJobInternal(Job job, Cluster cluster) throws ClassNotFoundException, InterruptedException, IOException { // 检查输出目录合法性(已存在?没指定?),这就是为什么每次提交作业,总是这个 错比较靠前的报出来 checkSpecs(job); Configuration conf = job.getConfiguration(); // 将框架提交到集群缓存(具体左右还未知?) addMRFrameworkToDistributedCache(conf); // 获得登录区,用以存放作业执行过程中用到的文件,默认位置/tmp/hadoop-yarn/staging/root/.staging // ,可通过yarn.app.mapreduce.am.staging-dir修改 Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf); // configure the command line options correctly on the submitting dfs // 这是获取和设置提交job机器的地址和主机名 InetAddress ip = InetAddress.getLocalHost(); if (ip != null) { submitHostAddress = ip.getHostAddress(); submitHostName = ip.getHostName(); conf.set(MRJobConfig.JOB_SUBMITHOST, submitHostName); conf.set(MRJobConfig.JOB_SUBMITHOSTADDR, submitHostAddress); } // 取得当前Job的ID(后面详细关注此处) JobID jobId = submitClient.getNewJobID(); job.setJobID(jobId); // 作业提交目录 Path submitJobDir = new Path(jobStagingArea, jobId.toString()); JobStatus status = null; try { conf.set(MRJobConfig.USER_NAME, UserGroupInformation.getCurrentUser().getShortUserName()); conf.set("hadoop.http.filter.initializers", "org.apache.hadoop.yarn.server.webproxy.amfilter.AmFilterInitializer"); conf.set(MRJobConfig.MAPREDUCE_JOB_DIR, submitJobDir.toString()); LOG.debug("Configuring job " + jobId + " with " + submitJobDir + " as the submit dir"); // get delegation token for the dir TokenCache.obtainTokensForNamenodes(job.getCredentials(), new Path[] { submitJobDir }, conf); populateTokenCache(conf, job.getCredentials()); // generate a secret to authenticate shuffle transfers if (TokenCache.getShuffleSecretKey(job.getCredentials()) == null) { KeyGenerator keyGen; try { int keyLen = CryptoUtils.isShuffleEncrypted(conf) ? conf.getInt(MRJobConfig.MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS, MRJobConfig.DEFAULT_MR_ENCRYPTED_INTERMEDIATE_DATA_KEY_SIZE_BITS) : SHUFFLE_KEY_LENGTH; keyGen = KeyGenerator.getInstance(SHUFFLE_KEYGEN_ALGORITHM); keyGen.init(keyLen); } catch (NoSuchAlgorithmException e) { throw new IOException("Error generating shuffle secret key", e); } SecretKey shuffleKey = keyGen.generateKey(); TokenCache.setShuffleSecretKey(shuffleKey.getEncoded(), job.getCredentials()); } // 从本地copy文件到hdfs,比如我们提交的wordcount.jar copyAndConfigureFiles(job, submitJobDir); Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir); // Create the splits for the job,其实也就是确定了map的数量 LOG.debug("Creating splits at " + jtFs.makeQualified(submitJobDir)); int maps = writeSplits(job, submitJobDir); conf.setInt(MRJobConfig.NUM_MAPS, maps); LOG.info("number of splits:" + maps); // write "queue admins of the queue to which job is being submitted" // to job file. String queue = conf.get(MRJobConfig.QUEUE_NAME, JobConf.DEFAULT_QUEUE_NAME); AccessControlList acl = submitClient.getQueueAdmins(queue); conf.set(toFullPropertyName(queue, QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString()); // removing jobtoken referrals before copying the jobconf to HDFS // as the tasks don't need this setting, actually they may break // because of it if present as the referral will point to a // different job. TokenCache.cleanUpTokenReferral(conf); if (conf.getBoolean(MRJobConfig.JOB_TOKEN_TRACKING_IDS_ENABLED, MRJobConfig.DEFAULT_JOB_TOKEN_TRACKING_IDS_ENABLED)) { // Add HDFS tracking ids ArrayListtrackingIds = new ArrayList (); for (Token extends TokenIdentifier> t : job.getCredentials().getAllTokens()) { trackingIds.add(t.decodeIdentifier().getTrackingId()); } conf.setStrings(MRJobConfig.JOB_TOKEN_TRACKING_IDS, trackingIds.toArray(new String[trackingIds.size()])); } // Set reservation info if it exists ReservationId reservationId = job.getReservationId(); if (reservationId != null) { conf.set(MRJobConfig.RESERVATION_ID, reservationId.toString()); } // Write job file to submit dir writeConf(conf, submitJobFile); // // Now, actually submit the job (using the submit name) // printTokens(jobId, job.getCredentials());
//提交!!!!!!!! status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials()); if (status != null) { return status; } else { throw new IOException("Could not launch job"); } } finally { if (status == null) { LOG.info("Cleaning up the staging area " + submitJobDir); if (jtFs != null && submitJobDir != null) jtFs.delete(submitJobDir, true); } } }
那么这个最终提交用到的submitClient是哪来的?他是怎么定义的?
它是上文提到的,连接集群的时候创建的。这个集群定义了很多信息:客户端信息、用户组信息、文件系统信息,配置信息,历史job目录,系统目录等。其中客户端信息,提供了初始化方法,如下:
public Cluster(InetSocketAddress jobTrackAddr, Configuration conf) throws IOException { this.conf = conf; this.ugi = UserGroupInformation.getCurrentUser(); //初始化是重点 initialize(jobTrackAddr, conf); }
具体看下初始化过程:
private void initialize(InetSocketAddress jobTrackAddr, Configuration conf) throws IOException { synchronized (frameworkLoader) { for (ClientProtocolProvider provider : frameworkLoader) { LOG.debug("Trying ClientProtocolProvider : " + provider.getClass().getName());
//根据配置,创建客户端协议提供者 ClientProtocol clientProtocol = null; try { if (jobTrackAddr == null) {
//提供者返回的是一个具体的协议 clientProtocol = provider.create(conf); } else { clientProtocol = provider.create(jobTrackAddr, conf); } if (clientProtocol != null) { clientProtocolProvider = provider;
//看到没?协议是什么?协议其实就是个类,里面封装了一些约定好的属性,以及操作这些属性的方法。实例化为对象后,就是一个可用于通信的客户端 client = clientProtocol; LOG.debug("Picked " + provider.getClass().getName() + " as the ClientProtocolProvider"); break; } else { LOG.debug("Cannot pick " + provider.getClass().getName() + " as the ClientProtocolProvider - returned null protocol"); } } catch (Exception e) { LOG.info("Failed to use " + provider.getClass().getName() + " due to error: " + e.getMessage()); } } } if (null == clientProtocolProvider || null == client) { throw new IOException( "Cannot initialize Cluster. Please check your configuration for " + MRConfig.FRAMEWORK_NAME + " and the correspond server addresses."); } }
创建客户端协议提供者,用java.util.ServiceLoader,目前包含两个具体实现,LocalClientProtocolProvider(本地作业) YarnClientProtocolProvider(Yarn作业),此处会根据mapreduce.framework.name的配置选择使用哪个创建相应的客户端。
而YarnClientProtocolProvider的本质是创建了一个YarnRunner对象
public ClientProtocol create(Configuration conf) throws IOException { if (MRConfig.YARN_FRAMEWORK_NAME.equals(conf.get(MRConfig.FRAMEWORK_NAME))) { return new YARNRunner(conf); } return null; }
YarnRunner对象是干什么的?根据注释解释,是让当前JobClient在yarn上运行的。提供一些提交Job啊,杀死Job之类的方法。它实现了ClientProtocol接口,上面讲的提交的最后一步,其实最终就是调用了YarnRunner的submitJob方法。
它里面封装了ResourceMgrDelegate委托,委托的方法正是YarnClient类里的提交方法submitApplication。这样,当前作业(Application)提交过程,走到了YarnClient阶段。
总结:Job目前提交到了YarnClient实例中。那么YarnClient接下来怎么处理呢?