首先安装软件
先安装conda,使用清华的conda,说明书:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
然后下载安装miniconda,位置:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/ ,更改镜像配置
下载安装软件之前先搜索是否存在 https://bioconda.github.io/recipes.html
更改镜像源配置如下:
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda
conda config --set show_channel_urls yes
然后就可以根据流程来使用conda安装一系列软件
conda create -n wes python=2 bwa
conda info --envs
source activate wes
# 可以用search先进行检索
conda search sratools
## 保证所有的软件都是安装在 wes 这个环境下面
conda install sra-tools
conda install samtools
conda install -y bcftools vcftools snpeff
conda install -y multiqc qualimap
# https://software.broadinstitute.org/gatk/download/
https://github.com/broadinstitute/gatk/releases/download/4.0.6.0/gatk-4.0.6.0.zip
cd ~/biosoft
mkdir -p gatk4 && cd gatk4
wget https://github.com/broadinstitute/gatk/releases/download/4.0.6.0/gatk-4.0.6.0.zip
unzip gatk-4.0.6.0.zip
## 然后下载100G的必备数据才能使用GATK
熟悉参考基因组及必备数据库
/public/biosoft/GATK/resources/bundle/hg38/bwa_index/
|-- [ 20K] gatk_hg38.amb
|-- [445K] gatk_hg38.ann
|-- [3.0G] gatk_hg38.bwt
|-- [767M] gatk_hg38.pac
|-- [1.5G] gatk_hg38.sa
|-- [6.2K] hg38.bwa_index.log
`-- [ 566] run.sh
/public/biosoft/GATK/resources/bundle/hg38/
|-- [1.8G] 1000G_phase1.snps.high_confidence.hg38.vcf.gz
|-- [2.0M] 1000G_phase1.snps.high_confidence.hg38.vcf.gz.tbi
|-- [3.2G] dbsnp_146.hg38.vcf.gz
|-- [3.0M] dbsnp_146.hg38.vcf.gz.tbi
|-- [ 59M] hapmap_3.3.hg38.vcf.gz
|-- [1.5M] hapmap_3.3.hg38.vcf.gz.tbi
|-- [568K] Homo_sapiens_assembly38.dict
|-- [3.0G] Homo_sapiens_assembly38.fasta
|-- [157K] Homo_sapiens_assembly38.fasta.fai
|-- [ 20M] Mills_and_1000G_gold_standard.indels.hg38.vcf.gz
|-- [1.4M] Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.tbi
第一步是QC
包括使用fasqc和multiqc两个软件查看测序质量,以及使用trim_galore软件进行过滤低质量reads和去除接头。
mkdir ~/project/boy
wkd=/home/jmzeng/project/boy
mkdir {raw,clean,qc,align,mutation}
cd qc
find /public/project/clinical/beijing_boy -name *gz |grep -v '\._'|xargs fastqc -t 10 -o ./
假设质量很差,就过滤:
### step3: filter the bad quality reads and remove adaptors.
mkdir $wkd/clean
cd $wkd/clean
find /public/project/clinical/beijing_boy -name *gz |grep -v '\._'|grep 1.fastq.gz > 1
find /public/project/clinical/beijing_boy -name *gz |grep -v '\._'|grep 2.fastq.gz > 2
paste 1 2 > config
### 打开文件 qc.sh ,并且写入内容如下:
source activate wes
bin_trim_galore=trim_galore
dir=$wkd/clean
cat config |while read id
do
arr=(${id})
fq1=${arr[0]}
fq2=${arr[1]}
echo $dir $fq1 $fq2
nohup $bin_trim_galore -q 25 --phred33 --length 36 -e 0.1 --stringency 3 --paired -o $dir $fq1 $fq2 &
done
source deactivate
读质量较好的测序数据进行比对
先走测试数据
## 先提取小的fq
source activate wes
find /public/project/clinical/beijing_boy -name *gz |grep -v '\._' > fq.txt
cat fq.txt |while read id ;do (zcat $id|head -10000 > $(basename $id ".gz"));done
## 然后一个个小fq文件比对
sample='7E5239'
bwa mem -t 5 -R "@RG\tID:$sample\tSM:$sample\tLB:WGS\tPL:Illumina" /public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38 7E5239.L1_1.fastq 7E5239.L1_2.fastq | samtools sort -@ 5 -o 7E5239.bam -
sample='7E5240'
bwa mem -t 5 -R "@RG\tID:$sample\tSM:$sample\tLB:WGS\tPL:Illumina" /public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38 7E5240_L1_A001.L1_1.fastq 7E5240_L1_A001.L1_2.fastq | samtools sort -@ 5 -o 7E5240.bam -
sample='7E5241'
bwa mem -t 5 -R "@RG\tID:$sample\tSM:$sample\tLB:WGS\tPL:Illumina" /public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38 7E5241.L1_1.fastq 7E5241.L1_2.fastq | samtools sort -@ 5 -o 7E5241.bam -
## 或者循环比对
# 7E5239 7E5239.L1_1.fastq 7E5239.L1_2.fastq
# 7E5240 7E5240_L1_A001.L1_1.fastq 7E5240_L1_A001.L1_2.fastq
# 7E5241 7E5241.L1_1.fastq 7E5241.L1_2.fastq
INDEX=/public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38
cat config |while read id
do
arr=($id)
fq1=${arr[1]}
fq2=${arr[2]}
sample=${arr[0]}
bwa mem -t 5 -R "@RG\tID:$sample\tSM:$sample\tLB:WGS\tPL:Illumina" $INDEX $fq1 $fq2 | samtools sort -@ 5 -o $sample.bam -
done
然后走正常的数据
ls /home/jmzeng/project/boy/clean/*1.fq.gz >1
ls /home/jmzeng/project/boy/clean/*2.fq.gz >2
cut -d"/" -f 7 1 |cut -d"_" -f 1 > 0
paste 0 1 2 > config
source activate wes
INDEX=/public/biosoft/GATK/resources/bundle/hg38/bwa_index/gatk_hg38
cat config |while read id
do
arr=($id)
fq1=${arr[1]}
fq2=${arr[2]}
sample=${arr[0]}
echo $sample $fq1 $fq2
bwa mem -t 5 -R "@RG\tID:$sample\tSM:$sample\tLB:WGS\tPL:Illumina" $INDEX $fq1 $fq2 | samtools sort -@ 5 -o $sample.bam -
done
最简单的找变异流程
如果要理解参数的意思,参考我的直播基因组 【直播】我的基因组25:用bcftools来call variation
ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
source activate wes
time samtools mpileup -ugf $ref *.bam | bcftools call -vmO z -o out.vcf.gz
ls *.bam |xargs -i samtools index {}
## 没有去除PCR重复
去除PCR重复
理解参数和教程为什么会过时
# samtools markdup -r 7E5241.bam 7E5241.rm.bam
# samtools markdup -S 7E5241.bam 7E5241.mk.bam
完善的GATK流程
source activate wes
GATK=/home/jmzeng/biosoft/gatk4/gatk-4.0.6.0/gatk
ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
snp=/public/biosoft/GATK/resources/bundle/hg38/dbsnp_146.hg38.vcf.gz
indel=/public/biosoft/GATK/resources/bundle/hg38/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz
for sample in {7E5239.L1,7E5240,7E5241.L1}
do
echo $sample
# Elapsed time: 7.91 minutes
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" MarkDuplicates \
-I $sample.bam \
-O ${sample}_marked.bam \
-M $sample.metrics \
1>${sample}_log.mark 2>&1
## Elapsed time: 13.61 minutes
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" FixMateInformation \
-I ${sample}_marked.bam \
-O ${sample}_marked_fixed.bam \
-SO coordinate \
1>${sample}_log.fix 2>&1
samtools index ${sample}_marked_fixed.bam
## 17.2 minutes
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" BaseRecalibrator \
-R $ref \
-I ${sample}_marked_fixed.bam \
--known-sites $snp \
--known-sites $indel \
-O ${sample}_recal.table \
1>${sample}_log.recal 2>&1
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" ApplyBQSR \
-R $ref \
-I ${sample}_marked_fixed.bam \
-bqsr ${sample}_recal.table \
-O ${sample}_bqsr.bam \
1>${sample}_log.ApplyBQSR 2>&1
## 使用GATK的HaplotypeCaller命令
$GATK --java-options "-Xmx20G -Djava.io.tmpdir=./" HaplotypeCaller \
-R $ref \
-I ${sample}_bqsr.bam \
--dbsnp $snp \
-O ${sample}_raw.vcf \
1>${sample}_log.HC 2>&1
done
检查感兴趣基因区域内比对和找变异情况
通过IGV可视化来加深自己对这个流程的把握和理解。
chr17 HAVANA gene 43044295 43170245
3.5G Jul 21 18:01 7E5240.bam
7.1G Jul 21 21:40 7E5240_bqsr.bam
4.7G Jul 21 20:28 7E5240_marked.bam
4.8G Jul 21 20:44 7E5240_marked_fixed.bam
把这些bam里面的BRCA1基因的reads拿出来:
samtools view -h 7E5240.bam chr17:43044295-43170245 |samtools sort -o 7E5240.brca1.bam -
samtools view -h 7E5240_bqsr.bam chr17:43044295-43170245 |samtools sort -o 7E5240_bqsr.brca1.bam -
samtools view -h 7E5240_marked.bam chr17:43044295-43170245 |samtools sort -o 7E5240_marked.brca1.bam -
samtools view -h 7E5240_marked_fixed.bam chr17:43044295-43170245 |samtools sort -o 7E5240_marked_fixed.brca1.bam -
ls *brca1.bam|xargs -i samtools index {}
有了这些特定基因区域的bam,就可以针对特定基因找变异
source activate wes
ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
samtools mpileup -ugf $ref 7E5240_bqsr.brca1.bam | bcftools call -vmO z -o 7E5240_bqsr.vcf.gz
所有样本走samtools mpileup 和bcftools call 流程
仍然是参考我的直播基因组 【直播】我的基因组25:用bcftools来call variation
source activate wes
wkd=/home/jmzeng/project/boy
cd $wkd/align
ls *_bqsr.bam |xargs -i samtools index {}
ref=/public/biosoft/GATK/resources/bundle/hg38/Homo_sapiens_assembly38.fasta
nohup samtools mpileup -ugf $ref *_bqsr.bam | bcftools call -vmO z -o all_bqsr.vcf.gz &
比对及找变异结果的质控
raw和clean的fastq文件都需要使用fastqc质控。
比对的各个阶段的bam文件都可以质控。
使用qualimap对wes的比对bam文件总结测序深度及覆盖度。
source activate wes
wkd=/home/jmzeng/project/boy
cd $wkd/clean
ls *.gz |xargs fastqc -t 10 -o ./
cd $wkd/align
rm *_marked*.bam
ls *.bam |xargs -i samtools index {}
ls *.bam | while read id ;do (samtools flagstat $id > $(basename $id ".bam").stat);done
conda install bedtools
cat /public/annotation/CCDS/human/CCDS.20160908.txt |perl -alne '{/\[(.*?)\]/;next unless $1;$gene=$F[2];$exons=$1;$exons=~s/\s//g;$exons=~s/-/\t/g;print "$F[0]\t$_\t$gene" foreach split/,/,$exons;}'|sort -u |bedtools sort -i |awk '{print "chr"$0"\t0\t+"}' > $wkd/align/hg38.exon.bed
exon_bed=hg38.exon.bed
ls *_bqsr.bam | while read id;
do
sample=${id%%.*}
echo $sample
qualimap bamqc --java-mem-size=20G -gff $exon_bed -bam $id &
done
### featureCounts
gtf=/public/reference/gtf/gencode/gencode.v25.annotation.gtf.gz
featureCounts -T 5 -p -t exon -g gene_id \
-a $gtf *_bqsr.bam -o all.id.txt 1>counts.id.log 2>&1 &
比较两个找变异工具的区别
chr1 139213 . A G 388 .
DP=984;VDB=0.831898;SGB=-223.781;RPB=0.599582;MQB=0.0001971;MQSB=0.00457372;BQB=2.59396e-09;MQ0F=0.281504;ICB=0.333333;HOB=0.5;AC=3;AN=6;DP4=371,169,160,84;MQ=21
GT:PL 0/1:198,0,255 0/1:176,0,255 0/1:50,0,158
chr1 139213 rs370723703 A G 3945.77 . AC=1;AF=0.500;AN=2;BaseQRankSum=-2.999;ClippingRankSum=0.000;DB;DP=244;ExcessHet=3.0103;FS=2.256;MLEAC=1;MLEAF=0.500;MQ=29.33;MQRankSum=-0.929;QD=16.17;ReadPosRankSum=1.462;SOR=0.863 GT:AD:DP:GQ:PL 0/1:136,108:244:99:3974,0,6459
chr1 139213 rs370723703 A G 2261.77 . AC=1;AF=0.500;AN=2;BaseQRankSum=-1.191;ClippingRankSum=0.000;DB;DP=192;ExcessHet=3.0103;FS=9.094;MLEAC=1;MLEAF=0.500;MQ=32.03;MQRankSum=-0.533;QD=11.78;ReadPosRankSum=0.916;SOR=0.321 GT:AD:DP:GQ:PL 0/1:126,66:192:99:2290,0,7128
chr1 139213 rs370723703 A G 2445.77 . AC=1;AF=0.500;AN=2;BaseQRankSum=-2.495;ClippingRankSum=0.000;DB;DP=223;ExcessHet=3.0103;FS=10.346;MLEAC=1;MLEAF=0.500;MQ=30.18;MQRankSum=0.486;QD=10.97;ReadPosRankSum=-0.808;SOR=0.300 GT:AD:DP:GQ:PL 0/1:152,71:223:99:2474,0,7901
补充作业
使用freebayes和varscan找变异。
VCF下游分析
主要是:注释和过滤
注释
VEP,snpEFF,ANNOVAR
1.Annovar使用记录 (http://www.bio-info-trainee.com/641.html)
2.用annovar对snp进行注释 (http://www.bio-info-trainee.com/441.html)
3.对感兴趣的基因call variation(http://www.bio-info-trainee.com/2013.html)
4.WES(六)用annovar注释(http://www.bio-info-trainee.com/1158.html)
cd ~/biosoft/
ln -s /public/biosoft/ANNOVAR/ ANNOVAR
source activate wes
wkd=/home/jmzeng/project/boy
cd $wkd/mutation
mv ../align/*.vcf ./
~/biosoft/ANNOVAR/annovar/convert2annovar.pl -format vcf4old 7E5240_raw.vcf >7E5240.annovar
~/biosoft/ANNOVAR/annovar/annotate_variation.pl \
-buildver hg38 \
--outfile 7E5240.anno \
7E5240.annovar \
~/biosoft/ANNOVAR/annovar/humandb/
其实并不一定需要vcf文件,软件需要的只是染色体加上坐标即可,对于我们的vcf格式的变异文件, 软件通常会进行一定程度的格式化之后再进行注释。这里的注释主要有三种方式,分别是:
- 基于基因的注释,
exonic,splicing,ncRNA,UTR5,UTR3,intronic,upstream,downstream,intergenic
- 基于区域的注释,
cytoBand,TFBS,SV,bed,GWAS,ENCODE,enhancers, repressors, promoters
- 基于数据库的过滤,
dbSNP,ExAC,ESP6500,cosmic,gnomad,1000genomes,clinvar
如果要使用annovar一次性注释多个数据库
dir=/home/jianmingzeng/biosoft/ANNOVAR/annovar
db=$dir/humandb/
ls $db
wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/archive_2.0/2018/clinvar_20180603.vcf.gz
perl $dir/annotate_variation.pl --downdb --webfrom annovar --buildver hg38
clinvar_20180603 $db
# perl $bin --downdb --webfrom annovar --buildver hg38 gnomad_genome $db
mkdir annovar_results
$dir/convert2annovar.pl -format vcf4old highQ.vcf 1> highQ.avinput 2>/dev/null
perl $dir/annotate_variation.pl -buildver hg38 -filter -dbtype clinvar_20180603 --outfile annovar_results/highQ_clinvar highQ.avinput $db
perl $dir/table_annovar.pl \
-buildver hg38 \
highQ.avinput $db \
-out test \
-remove -protocol \
refGene,clinvar_20170905 \
-operation g,r \
-nastring NA
补充作业
使用 Variant Effect Predictor 对所有遗传变异进行注释。过滤掉 dbSNP 数据库和千人基因组计划数据库中已知的 SNP。
应用 OMIM 数据库(http://omim.org/)查询蛋白 的结构及功能。利用 SIFT ,PolyPhen-2 以及 PROVEAN 软件, 预测 SNV 对蛋白质功能的影响 程度,仅当 3 种软件均预测同一遗传变异对蛋白质 的功能影响较大时,才认定该遗传变异具有高危害 性。利用 PROVEAN 软件 预测 Indel 对蛋白质功 能的影响。
其实dbNSFP数据库,就注释了这些变异对蛋白功能的影响。
变异位点的过滤
使用 GATK的 Joint Calling , 过滤参考:https://mp.weixin.qq.com/s/W8Vfv1WmW6M7U0tIcPtlng
注意很多资料会过时
比如虽然可以找到了gatk3代码:http://baserecalibrator1.rssing.com/chan-10751514/all_p13.html 但是已经可以抛弃了,也就是说教程经常会过时。
GVCF 教程
你以为的可能不是你以为的
新鲜出炉的GATK4培训教材全套PPT,赶快下载学习吧
曾老湿最新私已:GATK4实战教程
GATK4的gvcf流程