使用StreamingPro 快速构建Spark SQL on CarbonData

前言

CarbonData已经发布了1.0版本,变更还是很快的,这个版本已经移除了kettle了,使得部署和使用 变得很简单,而且支持1.6+ ,2.0+等多个Spark版本。

StreamingPro可以使得你很简单通过一个命令就能体验Carbondata,并且支持Http/JDBC的访问形态。

下载Spark发行版

比如我下载后的版本是这个: spark-1.6.3-bin-hadoop2.6。

下载StreamingPro

地址在这: https://pan.baidu.com/s/1eRO5Wga ,你会得到一个比较大的Jar包。

同时你需要到maven下载一个 carbondata-spark-1.0.0-incubating.jar ,这个因为一些特殊原因才会用到。

你需要一个数据库

因为我们用到了Hive 的mysql,所以你需要准备一个可以连接的数据库。只要能连接就行。如果没有,比如你是mac的话,用

brew install mysql 

即可。然后brew services start mysql

创建一个数据库:

create database hive CHARACTER SET latin1

//如果数据库包字符异常啥的,启动完streamingpro后到数据库做如下更改:
alter table PARTITIONS convert to character set latin1;
alter table PARTITION_KEYS convert to character set latin1;

写一个hive-site.xml文件






  javax.jdo.option.ConnectionURL
  jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNoExist=true



  javax.jdo.option.ConnectionDriverName
  com.mysql.jdbc.Driver



  javax.jdo.option.ConnectionUserName
  你的mysql账号



  javax.jdo.option.ConnectionPassword
  你的mysql密码



  hive.metastore.warehouse.dir
  file:///tmp/user/hive/warehouse



hive.exec.scratchdir
file:///tmp/hive/scratchdir



 hive.metastore.uris
 



  datanucleus.autoCreateSchema
  true



可以启动了

//streamingpro jar包所处的目录,
//里面新建一个query.json文件,里面放一个大括号就行 

SHome=/Users/allwefantasy/streamingpro

./bin/spark-submit   --class streaming.core.StreamingApp \
--master local[2] \
--name sql-interactive \
--jars /Users/allwefantasy/.m2/repository/org/apache/carbondata/carbondata-spark/1.0.0-incubating/carbondata-spark-1.0.0-incubating.jar \
--files $SHome/hive-site.xml \
--conf "spark.sql.hive.thriftServer.singleSession=true" \
$SHome/streamingpro-0.4.8-SNAPSHOT-online-1.6.1.jar    \
-streaming.name sql-interactive    \
-streaming.job.file.path file://$SHome/query.json \
-streaming.platform spark   \
-streaming.rest true   \
-streaming.driver.port 9004   \
-streaming.spark.service true \
-streaming.thrift true \
-streaming.enableCarbonDataSupport true \
-streaming.enableHiveSupport true \
-streaming.carbondata.store /tmp/carbondata/store \
-streaming.carbondata.meta /tmp/carbondata/meta

参数比较多。大家不用管他。 这样http端口是9004, jdbc端口是 10000。
我们可以通过http创建一张表

//这里的sql是: CREATE TABLE IF NOT EXISTS test_table4(id string, name string, city string, age Int) STORED BY 'carbondata'

curl --request POST \
  --url http://127.0.0.1:9004/run/sql \
  --header 'cache-control: no-cache' \
  --header 'content-type: application/x-www-form-urlencoded' \
  --header 'postman-token: 731441ac-c398-9a1b-2f06-8725ddbe84cd' \
  --data 'sql=CREATE%20TABLE%20IF%20NOT%20EXISTS%20test_table4(id%20string%2C%20name%20string%2C%20city%20string%2C%20age%20Int)%20STORED%20BY%20'\''carbondata'\'''

写入数据前,我们建立一个sample.csv的文件,

id,name,city,age
1,david,shenzhen,31
2,eason,shenzhen,27
3,jarry,wuhan,35

然后将这个文件导入:

//实际SQL:LOAD DATA LOCAL INPATH  '/Users/allwefantasy/streamingpro/sample.csv'  INTO TABLE test_table4
curl --request POST \
  --url http://127.0.0.1:9004/run/sql \
  --header 'cache-control: no-cache' \
  --header 'content-type: application/x-www-form-urlencoded' \
  --header 'postman-token: 5eb19ab4-653c-d05f-29ab-6003d7e83755' \
  --data 'sql=LOAD%20DATA%20LOCAL%20INPATH%20%20'\''%2FUsers%2Fallwefantasy%2Fstreamingpro%2Fsample.csv'\''%20%20INTO%20TABLE%20test_table4'

这个使用我们可以用http查询:

//sql: SELECT * FROM test_table4
curl --request POST \
  --url http://127.0.0.1:9004/run/sql \
  --header 'cache-control: no-cache' \
  --header 'content-type: application/x-www-form-urlencoded' \
  --header 'postman-token: d99349ae-b226-8a4e-4d65-d92b1771c111' \
  --data 'sql=SELECT%20*%20FROM%20test_table4'

你也可以写一个jdbc程序:

object ScalaJdbcConnectSelect {

  def main(args: Array[String]) {
    // connect to the database named "mysql" on the localhost
    val driver = "com.mysql.jdbc.Driver"
    val url = "jdbc:hive2://localhost:10000/default"

    // there's probably a better way to do this
    var connection:Connection = null

    try {
      // make the connection
      Class.forName(driver)
      connection = DriverManager.getConnection(url)

      // create the statement, and run the select query
      val statement = connection.createStatement()
      val resultSet = statement.executeQuery("SELECT * FROM test_table4 ")
      while ( resultSet.next() ) {
        println(" city = "+ resultSet.getString("city") )
      }
    } catch {
      case e => e.printStackTrace
    }
    connection.close()
  }

}

完成。

你可能感兴趣的:(使用StreamingPro 快速构建Spark SQL on CarbonData)