Table of Contents
- Edge List <-- Adjacency Matrix
- Edge List --> Adjacency Matrix
- About Adjacency List
Edge List <-- Adjacency Matrix
'''
ref: https://www.cnblogs.com/sonictl/p/10688533.html
convert adjMatrix into edgelist: 'data/unweighted_edgelist.number' or 'data/weighted_edgelist.number''
input: adjacency matrix with delimiter=', '
it can process:
- Unweighted directed graph
- Weighted directed graph
output: edgelist (unweighted and weighted)
'''
import numpy as np
import networkx as nx
# -------DIRECTED Graph, Unweighted-----------
# Unweighted directed graph:
a = np.loadtxt('data/test_adjMatrix.txt', delimiter=', ', dtype=int)
D = nx.DiGraph(a)
nx.write_edgelist(D, 'data/unweighted_edgelist.number', data=False) # output
edges = [(u, v) for (u, v) in D.edges()]
print(edges)
# -------DIRECTED Graph, Weighted------------
# Weighted directed graph (weighted adj_matrix):
a = np.loadtxt('data/adjmatrix_weight_sample.txt', delimiter=', ', dtype=float)
D = nx.DiGraph(a)
nx.write_weighted_edgelist(D, 'data/weighted_edgelist.number') # write the weighted edgelist into file
# print(D.edges)
elarge = [(u, v, d['weight']) for (u, v, d) in D.edges(data=True) if d['weight'] > 0.]
print(elarge) # class: list
# -------UNDIRECTED Graph -------------------
# for undirected graph, simply use:
udrtG = D.to_undirected()
'''
test_adjMatrix.txt: (Symmetric matrices if unweighted graph)
---
0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0
===
adjmatrix_weight_sample.txt:
---
0, 0.5, 0.5, 0.5, 0, 0.5, 0.5, 0
0, 0, 0.5, 0, 0, 0, 0.5, 0.5
0, 0, 0, 0.5, 0.5, 0, 0, 0
0, 0.5, 0, 0, 0.5, 0.5, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0.5, 0, 0, 0, 0, 0
===
output:
---
[(0, 1), (0, 2), (0, 3), (0, 5), (0, 6), (1, 2), (1, 6), (1, 7), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (7, 2)]
[(0, 1, 0.5), (0, 2, 0.5), (0, 3, 0.5), (0, 5, 0.5), (0, 6, 0.5), (1, 2, 0.5), (1, 6, 0.5), (1, 7, 0.5), (2, 3, 0.5), (2, 4, 0.5), (3, 1, 0.5), (3, 4, 0.5), (3, 5, 0.5), (7, 2, 0.5)]
===
'''
Edge List --> Adjacency Matrix
'''
https://networkx.github.io/documentation/networkx-2.2/reference/generated/networkx.linalg.graphmatrix.adjacency_matrix.html
'''
import numpy
import networkx as nx
# edgelist to adjacency matrix
# way1: G=nx.read_edgelist
D = nx.read_edgelist('input/edgelist_sample.txt', create_using=nx.DiGraph(), nodetype=int) # create_using=nx.Graph()
print(D.edges)
print(D.nodes)
# way2:
'''
a = numpy.loadtxt('input/edgelist_sample.txt', dtype=int)
edges = [tuple(e) for e in a]
D = nx.DiGraph()
D.add_edges_from(edges) # D.add_edges_from(nodes); D.edges; D.nodes
D.name = 'digraph_sample'
print(nx.info(D))
udrtG = D.to_undirected()
udrtG.name = 'udrt'
print(nx.info(udrtG))
'''
# dump to file as adjacency Matrix
A = nx.adjacency_matrix(D, nodelist=list(range(len(D.nodes)))) # nx.adjacency_matrix(D, nodelist=None, weight='weight') # Return type: SciPy sparse matrix
# print(A) # type < SciPy sparse matrix >
A_dense = A.todense() # type-> numpy.matrixlib.defmatrix.matrix
print(A_dense, type(A_dense))
print('--- See two row of matrix equal or not: ---')
print((numpy.equal(A_dense[5], A_dense[6])).all())
# print('to_numpy_array:\n', nx.to_numpy_array(D, nodelist=list(range(len(D.nodes)))))
# print('to_dict_of_dicts:\n', nx.to_dict_of_dicts(D, nodelist=list(range(len(D.nodes)))))
About Adjacency LIST
nx.read_adjlist()
Convert Adjacency matrix into edgelist
import numpy as np
#read matrix without head.
a = np.loadtxt('admatrix.txt', delimiter=', ', dtype=int) #set the delimiter as you need
print "a:"
print a
print 'shape:',a.shape[0] ,"*", a.shape[1]
num_nodes = a.shape[0] + a.shape[1]
num_edge = 0
edgeSet = set()
for row in range(a.shape[0]):
for column in range(a.shape[1]):
if a.item(row,column) == 1 and (column,row) not in edgeSet: #get rid of repeat edge
num_edge += 1
edgeSet.add((row,column))
print '\nnum_edge:', num_edge
print 'edge Set:', edgeSet
print ''
for edge in edgeSet:
print edge[0] , edge[1]
Sample Adjacency Matrix Input file:
0, 1, 1, 1, 0, 1, 1, 0
0, 0, 1, 0, 0, 0, 1, 1
0, 0, 0, 1, 1, 0, 0, 0
0, 1, 0, 0, 1, 1, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0
0, 0, 1, 0, 0, 0, 0, 0