Collection
1.List
ArrayList源码分析
package java.util; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; import sun.misc.SharedSecrets; public class ArrayListextends AbstractList implements List , RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * 默认初始化容量 */ private static final int DEFAULT_CAPACITY = 10; /** * 空数组 */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * 空数组 */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * 存放元素的数组 */ transient Object[] elementData; /** * 数组的元素个数 */ private int size; /** *有参构造容量大于0,一个新的对应容量的数组赋值给elementData;容量等于0,把空数组赋值给elementData;容**量小于0,抛出异常 */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** *无参构造:将空数组赋值给了elementData */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** *把Collection构建成ArrayList */ public ArrayList(Collection extends E> c) { //使用Collection的toArray()方法得到一个对象数组并赋值给elementData elementData = c.toArray(); //size是容器元素个数,所以集合转ArrayList存储时候要对size进行赋值。 if ((size = elementData.length) != 0) { // //这里是当c.toArray出错,没有返回Object[]时,利用Arrays.copyOf 来复制集合c中的元素到elementData数组中 if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { //假如collection为空的话,直接给elementData一个空数组 this.elementData = EMPTY_ELEMENTDATA; } } /** * 截断多余的容量,在内存紧缺时候使用。 */ public void trimToSize() { modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } /** * 分配的数组最大限度。超出可能会OutOfMemoryError */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * 返回元素个数 */ public int size() { return size; } /** * 判断ArrayList是否为空 */ public boolean isEmpty() { return size == 0; } /** * 判断ArrayList是否包含o */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * 如果容器中的元素有和o相等的,那么返回第一个相等元素的下标,如果没有返回-1 * 从前寻找 */ public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } /** * 功能和上面一样 * 只不过从后寻找 */ public int lastIndexOf(Object o) { if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * ArrayList的浅拷贝 */ public Object clone() { try { ArrayList> v = (ArrayList>) super.clone(); //如果是对象的话,只会拷贝对象,不会拷贝对象的值 v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } /** * ArrayList转换为数组 */ public Object[] toArray() { return Arrays.copyOf(elementData, size); } /** * ArrayList转换为指定格式的数组 * 如果ArrayList的长度大于数组a的长度,那么创建一个a类型的新数组 * 如果ArrayList的长度小于数组a的长度,那么直接把ArrayList元素复制给a,并把下标等于size元素 * 替换为null,后面的元素不动 */ @SuppressWarnings("unchecked") public T[] toArray(T[] a) { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } /** * 查询 index角标元素 */ public E get(int index) { //越界检查 rangeCheck(index); return elementData(index); } /** * 更新index角标元素 */ public E set(int index, E element) { //越界检查 rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /** * 从尾部插入元素操作 */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! //在新数组末端添加一个元素 elementData[size++] = e; return true; } private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); } private static int calculateCapacity(Object[] elementData, int minCapacity) { //假如ArrayList是通过无参构造方法创建出来的对象,如果大于10就返回元素个数,如果小于10(默认初始容量) //就返回10 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); } //如果ArrayList不是通过无参构造创建出来的,那么直接返回元素个数即可 return minCapacity; } //modCount自增,如果需要扩容就进行扩容 private void ensureExplicitCapacity(int minCapacity) { modCount++; //继承自AbstractList 用来计集合修改的次数 // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * 扩容1.5倍,假如还不够的话,把元素个数作为容量。 */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; //如果新容量太大且超过数组最大值,如果元素个数大于数组容量最大值,那么把容量设为Integer的最大值 //如果元素个数小于数组最大值,那么把容量扩容到数组容量最大值即可 if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // 构建新数组 elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * 指定下标插入元素 */ public void add(int index, E element) { //下标越界判断 rangeCheckForAdd(index); //和尾部增加一样,判断是否需要扩容,如需则构建新数组,modCount自增 ensureCapacityInternal(size + 1); // Increments modCount!! //其他元素下标后移 System.arraycopy(elementData, index, elementData, index + 1, size - index); //把元素添加到index下标处 elementData[index] = element; //元素个数+1 size++; } /** * 判断index是否越界 */ private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * ArrayList尾部添加Collection */ public boolean addAll(Collection extends E> c) { //把Collection构建成数组 Object[] a = c.toArray(); int numNew = a.length; //判断是否需要扩容,如需则构建新数组,modCount自增 ensureCapacityInternal(size + numNew); // Increments modCount //把数组拷贝到原ArrayList尾部 System.arraycopy(a, 0, elementData, size, numNew); //新size size += numNew; return numNew != 0; } /** * 从下标index处插入集合c */ public boolean addAll(int index, Collection extends E> c) { //角标越界判断 rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; //index处的元素后移数组c长度个位置 if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); //把c数组插入上面移出的空位 System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /** * 如有必要,增加此 ArrayList 实例的容量,以确保它至少能够容纳最小容量参数所指定的元素数。 */ public void ensureCapacity(int minCapacity) { //ArrayList不是通过无参构造创建的设置minExpand为0,如果是通过无参构造创建的设置为初始容量10 int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) // any size if not default element table ? 0 // larger than default for default empty table. It's already // supposed to be at default size. : DEFAULT_CAPACITY; if (minCapacity > minExpand) { //modCound自增,进行扩容 ensureExplicitCapacity(minCapacity); } } /** * 删除对应下标的元素 */ public E remove(int index) { //判断下标是否越界 rangeCheck(index); //modCound自增 modCount++; //根据下标获取对应的元素 E oldValue = elementData(index); int numMoved = size - index - 1; //假如index对应元素不是最后一个元素,把这个元素后面的其他元素前移一位 if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); //把最后一位设置为默认的null元素 elementData[--size] = null; // clear to let GC do its work //返回移出的元素 return oldValue; } //根据下标获取数组对应的元素 @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /** * 如果ArrayList中有o元素,从ArrayList中删除第一个o元素 */ public boolean remove(Object o) { //循环数组,如果其中元素和o相等,删除对应下标的元素并返回。 if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * modCound自增,移出index处的元素,然后后面元素前移,尾元素赋值null * 不用返回对应元素,不会越界所以不需要越界判断。 */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } /** * 从ArrayList中删除Collection包含的元素 */ public boolean removeAll(Collection> c) { //查看Objects源码 此处如果c为空,抛出空指针异常 Objects.requireNonNull(c); return batchRemove(c, false); } /** * 从ArrayList中保留c中包含的元素 */ public boolean retainAll(Collection> c) { Objects.requireNonNull(c); return batchRemove(c, true); } private boolean batchRemove(Collection> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) //complement为false,c中不包含的元素,从下标为0处放入到elementData中 //complement为true,c中包含的元素,从下标为0处放入到elementData中 if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { //由于c.contains报异常导致r!=size,把从r开始的后面项,都赋值到elementData的w项后 //即现在的elementData的w项前的元素,都是c中不包含的。w和w项后的元素还未判断,整体拿过来 if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); //把w变为elementData元素的"size"。这里的size不是实际的元素个数 //由于上面为了提高性能,没有创建新数组。而是把不被c包含的元素从开头再次存入这个数组。 //没有存放过的下标位上不是null而是以前的元素。 w += size - r; } //如果w=size,那么说明异常前,elementData的前r项都不被c包含 //此处说明有元素不被c包含 //清空上面提到的老元素 if (w != size) { // clear to let GC do its work for (int i = w; i < size; i++) elementData[i] = null; //modCount增加size-w 即从中剔除了size-w个元素 modCount += size - w; size = w; modified = true; } } return modified; } /** * 清空数组中的元素 */ public void clear() { modCount++; // clear to let GC do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } /** * 删除从fromIndex到toIndex(不包含)的元素 注意:继承ArrayList的类才可用 */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; //把从toInDex开始的元素,复制到fromIndex---fromIndex+numMoed(不包含)处 System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); //清空fromIndex+numMoed及后面的元素 // clear to let GC do its work int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; } /** * 越界检查 */ private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } /** * Save the state of the ArrayList instance to a stream (that * is, serialize it). * * @serialData The length of the array backing the ArrayList * instance is emitted (int), followed by all of its elements * (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i ) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Reconstitute the ArrayList instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity int capacity = calculateCapacity(elementData, size); SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity); ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i ) { a[i] = s.readObject(); } } } /* 我们在使用List,Set的时候,为了实现对其数据的遍历,我们经常使用到了Iterator(迭代器)。使用迭代器,你不需要干涉其遍历的过程,只需要每次取出一个你想要的数据进行处理就可以了。但是在使用的时候也是有不同的。List和Set都有iterator()来取得其迭代器。对List来说,你也可以通过listIterator()取得其迭代器,两种迭代器在有些时候是不能通用的, terator和ListIterator主要区别在以下方面: 1. iterator()方法在set和list接口中都有定义,但是ListIterator()仅存在于list接口中(或实现类中); 2. ListIterator有add()方法,可以向List中添加对象,而Iterator不能 3.ListIterator和Iterator都有hasNext()和next()方法,可以实现顺序向后遍历,但是ListIterator有hasPrevious()和previous()方法,可以实现逆向(顺序向前)遍历。Iterator就不可以。 4. ListIterator可以定位当前的索引位置,nextIndex()和previousIndex()可以实现。Iterator没有此功能。 5.都可实现删除对象,但是ListIterator可以实现对象的修改,set()方法可以实现。Iierator仅能遍历,不能修改。 因为ListIterator的这些功能,可以实现对LinkedList等List数据结构的操作。其实,数组对象也可以用迭代器来实现。 */ /** * 从AbstractList继承过来的,返回当前索引位置的迭代器 */ public ListIterator listIterator(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } /** * 从AbstractList继承过来的,返回此列表元素的列表迭代器 */ public ListIterator listIterator() { return new ListItr(0); } /** * 返回以恰当顺序在此列表的元素上进行迭代的迭代器。 */ public Iterator iterator() { return new Itr(); } /** * An optimized version of AbstractList.Itr */ private class Itr implements Iterator { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; Itr() {} public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr */ private class ListItr extends Itr implements ListIterator { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * Returns a view of the portion of this list between the specified * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If * {@code fromIndex} and {@code toIndex} are equal, the returned list is * empty.) The returned list is backed by this list, so non-structural * changes in the returned list are reflected in this list, and vice-versa. * The returned list supports all of the optional list operations. * * This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays). Any operation that expects * a list can be used as a range operation by passing a subList view * instead of a whole list. For example, the following idiom * removes a range of elements from a list: *
* list.subList(from, to).clear(); ** Similar idioms may be constructed for {@link #indexOf(Object)} and * {@link #lastIndexOf(Object)}, and all of the algorithms in the * {@link Collections} class can be applied to a subList. * *The semantics of the list returned by this method become undefined if * the backing list (i.e., this list) is structurally modified in * any way other than via the returned list. (Structural modifications are * those that change the size of this list, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * *
@throws IndexOutOfBoundsException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public ListsubList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } private class SubList extends AbstractList implements RandomAccess { private final AbstractList parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection extends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collection extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator iterator() { return listIterator(); } public ListIterator listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator () { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer super E> consumer) { Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator spliterator() { checkForComodification(); return new ArrayListSpliterator (ArrayList.this, offset, offset + this.size, this.modCount); } } @Override public void forEach(Consumer super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Creates a late-binding * and fail-fast {@link Spliterator} over the elements in this * list. * * The {
@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliteratorspliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); } /** Index-based split-by-two, lazily initialized Spliterator */ static final class ArrayListSpliterator implements Spliterator { /* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision. (This doesn't apply to * SubLists, that create spliterators with current non-lazy * values). (2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference. This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself. The other * less-often-used methods cannot take advantage of most of * these streamlinings. */ private final ArrayList list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } public ArrayListSpliterator trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator (list, lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer super E> action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer super E> action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } @Override public boolean removeIf(Predicate super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @Override @SuppressWarnings("unchecked") public void sort(Comparator super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }
总结 :
1.底层为数组,当容量满时候进行扩容每次为1.5倍,如果还不够的话容量为元素个数。构建新数组,把原数组拷贝进新数组。
2.无参创建出来的ArrayList在第一次add时候会给一个10的容量。所以我们尽可能的在创建时候给它一个初始值,如果不确定那么用默认的10.
3. 查询效率高,插入删除元素会导致后面的所有元素前移或者后移下表,导致性能下降。即插入和删除效率低。
4.在removeAll和retainAll方法中用到了私有方法batchRemove。这个方法里面有个个算法,过滤数组中的元素,赋值给原数组。把可能c.contains报异常处理放在了finally中
LinkedList