java之Collection

Collection

1.List

     ArrayList源码分析

package java.util;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
import sun.misc.SharedSecrets;
public class ArrayList extends AbstractList
        implements List, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    /**
     * 默认初始化容量
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * 空数组
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * 空数组
     */
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     * 存放元素的数组
     */
    transient Object[] elementData; 

    /**
     * 数组的元素个数
     */
    private int size;

    /** *有参构造容量大于0,一个新的对应容量的数组赋值给elementData;容量等于0,把空数组赋值给elementData;容**量小于0,抛出异常
    */
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }

    /**
     *无参构造:将空数组赋值给了elementData
     */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

    /**
     *把Collection构建成ArrayList
     */
    public ArrayList(Collectionextends E> c) {
        //使用Collection的toArray()方法得到一个对象数组并赋值给elementData
        elementData = c.toArray();
        //size是容器元素个数,所以集合转ArrayList存储时候要对size进行赋值。
        if ((size = elementData.length) != 0) {
            // //这里是当c.toArray出错,没有返回Object[]时,利用Arrays.copyOf 来复制集合c中的元素到elementData数组中
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            //假如collection为空的话,直接给elementData一个空数组
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }
    /**
     *  截断多余的容量,在内存紧缺时候使用。
     */
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = (size == 0)
              ? EMPTY_ELEMENTDATA
              : Arrays.copyOf(elementData, size);
        }
    } 
    /**
     *  分配的数组最大限度。超出可能会OutOfMemoryError
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 返回元素个数
     */
    public int size() {
        return size;
    }
    /**
     * 判断ArrayList是否为空
     */
    public boolean isEmpty() {
        return size == 0;
    }
    /**
     * 判断ArrayList是否包含o
     */
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }
    /**
     * 如果容器中的元素有和o相等的,那么返回第一个相等元素的下标,如果没有返回-1
     * 从前寻找
     */
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    /**
     * 功能和上面一样
     * 只不过从后寻找
     */
    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    /**
     * ArrayList的浅拷贝
     */
    public Object clone() {
        try {
            ArrayList v = (ArrayList) super.clone();
            //如果是对象的话,只会拷贝对象,不会拷贝对象的值
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    /**
     * ArrayList转换为数组
     */
    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }

    /**
     *  ArrayList转换为指定格式的数组
     *  如果ArrayList的长度大于数组a的长度,那么创建一个a类型的新数组
     *  如果ArrayList的长度小于数组a的长度,那么直接把ArrayList元素复制给a,并把下标等于size元素
     *  替换为null,后面的元素不动
     */
    @SuppressWarnings("unchecked")
    public  T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a's runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    /**
     * 查询 index角标元素
     */
    public E get(int index) {
        //越界检查
        rangeCheck(index);
        return elementData(index);
    }

    /**
     * 更新index角标元素
     */
    public E set(int index, E element) {
        //越界检查
        rangeCheck(index);
        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    /**
     * 从尾部插入元素操作
     */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        //在新数组末端添加一个元素
        elementData[size++] = e;  
        return true;
    }
     private void ensureCapacityInternal(int minCapacity) {
        ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
    }
    private static int calculateCapacity(Object[] elementData, int minCapacity) {    //假如ArrayList是通过无参构造方法创建出来的对象,如果大于10就返回元素个数,如果小于10(默认初始容量)
    //就返回10
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            return Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        //如果ArrayList不是通过无参构造创建出来的,那么直接返回元素个数即可
        return minCapacity;
    }
     //modCount自增,如果需要扩容就进行扩容    
     private void ensureExplicitCapacity(int minCapacity) {
        modCount++;  //继承自AbstractList 用来计集合修改的次数
        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
    /**
     * 扩容1.5倍,假如还不够的话,把元素个数作为容量。
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        //如果新容量太大且超过数组最大值,如果元素个数大于数组容量最大值,那么把容量设为Integer的最大值
        //如果元素个数小于数组最大值,那么把容量扩容到数组容量最大值即可
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // 构建新数组
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
       private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }
    /**
     * 指定下标插入元素
     */
    public void add(int index, E element) {
        //下标越界判断
        rangeCheckForAdd(index);
        //和尾部增加一样,判断是否需要扩容,如需则构建新数组,modCount自增
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        //其他元素下标后移
        System.arraycopy(elementData, index, elementData, index + 1,
                         size - index);
        //把元素添加到index下标处                 
        elementData[index] = element;
        //元素个数+1
        size++;
    }
     /**
      *  判断index是否越界
      */
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
    /**
     *  ArrayList尾部添加Collection
     */
    public boolean addAll(Collectionextends E> c) {
        //把Collection构建成数组
        Object[] a = c.toArray();
        int numNew = a.length;
        //判断是否需要扩容,如需则构建新数组,modCount自增
        ensureCapacityInternal(size + numNew);  // Increments modCount
        //把数组拷贝到原ArrayList尾部
        System.arraycopy(a, 0, elementData, size, numNew);
        //新size
        size += numNew;
        return numNew != 0;
    }
    /**
     *  从下标index处插入集合c
     */
     public boolean addAll(int index, Collectionextends E> c) {
         //角标越界判断
        rangeCheckForAdd(index);
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        int numMoved = size - index;
        //index处的元素后移数组c长度个位置
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                             numMoved);
        //把c数组插入上面移出的空位
        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }     
     /**
      * 如有必要,增加此 ArrayList 实例的容量,以确保它至少能够容纳最小容量参数所指定的元素数。
      */      
    public void ensureCapacity(int minCapacity) {
        //ArrayList不是通过无参构造创建的设置minExpand为0,如果是通过无参构造创建的设置为初始容量10
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
            // any size if not default element table
            ? 0
            // larger than default for default empty table. It's already
            // supposed to be at default size.
            : DEFAULT_CAPACITY;
        if (minCapacity > minExpand) {
            //modCound自增,进行扩容
            ensureExplicitCapacity(minCapacity);
        }
    }
    /**
     *  删除对应下标的元素
     */
    public E remove(int index) {
        //判断下标是否越界
        rangeCheck(index);
        //modCound自增
        modCount++;
        //根据下标获取对应的元素
        E oldValue = elementData(index);
        int numMoved = size - index - 1;
        //假如index对应元素不是最后一个元素,把这个元素后面的其他元素前移一位
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        //把最后一位设置为默认的null元素
        elementData[--size] = null; // clear to let GC do its work
        //返回移出的元素
        return oldValue;
    }
    //根据下标获取数组对应的元素
    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }
    /**
     * 如果ArrayList中有o元素,从ArrayList中删除第一个o元素
     */
    public boolean remove(Object o) {
        //循环数组,如果其中元素和o相等,删除对应下标的元素并返回。
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }
    /*
     * modCound自增,移出index处的元素,然后后面元素前移,尾元素赋值null
     * 不用返回对应元素,不会越界所以不需要越界判断。
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }
    /**
     * 从ArrayList中删除Collection包含的元素
     */
    public boolean removeAll(Collection c) {
        //查看Objects源码 此处如果c为空,抛出空指针异常
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }
    /**
     * 从ArrayList中保留c中包含的元素
     */
     public boolean retainAll(Collection c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }
    private boolean batchRemove(Collection c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                //complement为false,c中不包含的元素,从下标为0处放入到elementData中
                //complement为true,c中包含的元素,从下标为0处放入到elementData中
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            //由于c.contains报异常导致r!=size,把从r开始的后面项,都赋值到elementData的w项后
            //即现在的elementData的w项前的元素,都是c中不包含的。w和w项后的元素还未判断,整体拿过来
            if (r != size) {
                System.arraycopy(elementData, r,
                                 elementData, w,
                                 size - r);
            //把w变为elementData元素的"size"。这里的size不是实际的元素个数
            //由于上面为了提高性能,没有创建新数组。而是把不被c包含的元素从开头再次存入这个数组。
            //没有存放过的下标位上不是null而是以前的元素。
            w += size - r;
            }
            //如果w=size,那么说明异常前,elementData的前r项都不被c包含
            //此处说明有元素不被c包含
            //清空上面提到的老元素
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                //modCount增加size-w  即从中剔除了size-w个元素
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }    
   /**
    * 清空数组中的元素
    */
    public void clear() {
        modCount++;
        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;
        size = 0;
    }
    /**
     *   删除从fromIndex到toIndex(不包含)的元素  注意:继承ArrayList的类才可用
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        //把从toInDex开始的元素,复制到fromIndex---fromIndex+numMoed(不包含)处
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);
        //清空fromIndex+numMoed及后面的元素
        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }
     /**
      *  越界检查
      */
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }
    /**
     * Save the state of the ArrayList instance to a stream (that
     * is, serialize it).
     *
     * @serialData The length of the array backing the ArrayList
     *             instance is emitted (int), followed by all of its elements
     *             (each an Object) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i) {
            s.writeObject(elementData[i]);
        }

        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Reconstitute the ArrayList instance from a stream (that is,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            int capacity = calculateCapacity(elementData, size);
            SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i) {
                a[i] = s.readObject();
            }
        }
    }
/*           我们在使用List,Set的时候,为了实现对其数据的遍历,我们经常使用到了Iterator(迭代器)。使用迭代器,你不需要干涉其遍历的过程,只需要每次取出一个你想要的数据进行处理就可以了。但是在使用的时候也是有不同的。List和Set都有iterator()来取得其迭代器。对List来说,你也可以通过listIterator()取得其迭代器,两种迭代器在有些时候是不能通用的,
   terator和ListIterator主要区别在以下方面:
       1. iterator()方法在set和list接口中都有定义,但是ListIterator()仅存在于list接口中(或实现类中);
       2. ListIterator有add()方法,可以向List中添加对象,而Iterator不能
       3.ListIterator和Iterator都有hasNext()和next()方法,可以实现顺序向后遍历,但是ListIterator有hasPrevious()和previous()方法,可以实现逆向(顺序向前)遍历。Iterator就不可以。
       4. ListIterator可以定位当前的索引位置,nextIndex()和previousIndex()可以实现。Iterator没有此功能。
       5.都可实现删除对象,但是ListIterator可以实现对象的修改,set()方法可以实现。Iierator仅能遍历,不能修改。  
         因为ListIterator的这些功能,可以实现对LinkedList等List数据结构的操作。其实,数组对象也可以用迭代器来实现。   
*/  
    /**
     *  从AbstractList继承过来的,返回当前索引位置的迭代器
     */
    public ListIterator listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }
    /**
     * 从AbstractList继承过来的,返回此列表元素的列表迭代器
     */
    public ListIterator listIterator() {
        return new ListItr(0);
    }

    /**
     * 返回以恰当顺序在此列表的元素上进行迭代的迭代器。
     */
    public Iterator iterator() {
        return new Itr();
    }

    /**
     * An optimized version of AbstractList.Itr
     */
    private class Itr implements Iterator {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;

        Itr() {}

        public boolean hasNext() {
            return cursor != size;
        }

        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }

        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumersuper E> consumer) {
            Objects.requireNonNull(consumer);
            final int size = ArrayList.this.size;
            int i = cursor;
            if (i >= size) {
                return;
            }
            final Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length) {
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[i++]);
            }
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    /**
     * An optimized version of AbstractList.ListItr
     */
    private class ListItr extends Itr implements ListIterator {
        ListItr(int index) {
            super();
            cursor = index;
        }

        public boolean hasPrevious() {
            return cursor != 0;
        }

        public int nextIndex() {
            return cursor;
        }

        public int previousIndex() {
            return cursor - 1;
        }

        @SuppressWarnings("unchecked")
        public E previous() {
            checkForComodification();
            int i = cursor - 1;
            if (i < 0)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i;
            return (E) elementData[lastRet = i];
        }

        public void set(E e) {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();

            try {
                ArrayList.this.set(lastRet, e);
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }

        public void add(E e) {
            checkForComodification();

            try {
                int i = cursor;
                ArrayList.this.add(i, e);
                cursor = i + 1;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a view of the portion of this list between the specified
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
     * empty.)  The returned list is backed by this list, so non-structural
     * changes in the returned list are reflected in this list, and vice-versa.
     * The returned list supports all of the optional list operations.
     *
     * 

This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays). Any operation that expects * a list can be used as a range operation by passing a subList view * instead of a whole list. For example, the following idiom * removes a range of elements from a list: *

     *      list.subList(from, to).clear();
     * 
* Similar idioms may be constructed for {
@link #indexOf(Object)} and * {@link #lastIndexOf(Object)}, and all of the algorithms in the * {@link Collections} class can be applied to a subList. * *

The semantics of the list returned by this method become undefined if * the backing list (i.e., this list) is structurally modified in * any way other than via the returned list. (Structural modifications are * those that change the size of this list, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @throws IndexOutOfBoundsException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public List subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } private class SubList extends AbstractList implements RandomAccess { private final AbstractList parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collectionextends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collectionextends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator iterator() { return listIterator(); } public ListIterator listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumersuper E> consumer) { Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator spliterator() { checkForComodification(); return new ArrayListSpliterator(ArrayList.this, offset, offset + this.size, this.modCount); } } @Override public void forEach(Consumersuper E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Creates a late-binding * and fail-fast {@link Spliterator} over the elements in this * list. * *

The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator spliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); } /** Index-based split-by-two, lazily initialized Spliterator */ static final class ArrayListSpliterator implements Spliterator { /* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision. (This doesn't apply to * SubLists, that create spliterators with current non-lazy * values). (2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference. This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself. The other * less-often-used methods cannot take advantage of most of * these streamlinings. */ private final ArrayList list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } public ArrayListSpliterator trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator(list, lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumersuper E> action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumersuper E> action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } @Override public boolean removeIf(Predicatesuper E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @Override @SuppressWarnings("unchecked") public void sort(Comparatorsuper E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }

View Code

    总结  :

            1.底层为数组,当容量满时候进行扩容每次为1.5倍,如果还不够的话容量为元素个数。构建新数组,把原数组拷贝进新数组。

            2.无参创建出来的ArrayList在第一次add时候会给一个10的容量。所以我们尽可能的在创建时候给它一个初始值,如果不确定那么用默认的10.

            3. 查询效率高,插入删除元素会导致后面的所有元素前移或者后移下表,导致性能下降。即插入和删除效率低。

            4.在removeAll和retainAll方法中用到了私有方法batchRemove。这个方法里面有个个算法,过滤数组中的元素,赋值给原数组。把可能c.contains报异常处理放在了finally中

LinkedList

 

你可能感兴趣的:(java之Collection)