LinkedHashMap,顾名思义连接的HashMap,它继承了HashMap,HashMap为了避免碰撞,因此用拉链法解决冲突,读过HashMap源码的读者可能会想:HashMap桶中的节点本来就是连接的呀?为什么还要引入LinkedHashMap呢?HashMap中的连接只是同一个桶中的元素连接,而LinkedHashMap是将所有桶中的节点串联成一个双向链表。
如下图所示:
它继承了HashMap的Node,Node基础上添加了before和after两个指针,
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry before, after;
Entry(int hash, K key, V value, Node next) {
super(hash, key, value, next);
}
}
LinkedHashMap使用的是LRU算法(最近最少使用)
当你插入元素时它会将节点插入双向链表的链尾,如果key重复,则也会将节点移动至链尾,当用get()方法获取value时也会将节点移动至链尾。
LinkedHashMap的put()方法是调用的HashMap的put()方法,你可能会问,调用的同一个方法那怎么实现上面说的功能啊?
我们先了解一下它的构造方法:
//accessOrder默认为false,即按照插入顺序来连接,true则为按照访问顺序来连接
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}
public LinkedHashMap() {
super();
accessOrder = false;
}
public LinkedHashMap(Map extends K, ? extends V> m) {
super();
accessOrder = false;
putMapEntries(m, false);
}
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
别急,我们再先来看一下putVal()的代码:
if ((p = tab[i = (n - 1) & hash]) == null)
//调用newNode()方法
tab[i] = newNode(hash, key, value, null);
else {
Node e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
//同上
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
其创建节点的方法是newNode()方法,而LinkedHashMap重写了这个方法:
Node newNode(int hash, K key, V value, Node e) {
LinkedHashMap.Entry p =
new LinkedHashMap.Entry(hash, key, value, e);
//将节点插入链尾
linkNodeLast(p);
return p;
}
private void linkNodeLast(LinkedHashMap.Entry p) {
LinkedHashMap.Entry last = tail;
tail = p;
// 如果链尾为空,则双向链表为空,则p即为头结点也为尾节点
if (last == null)
head = p;
else {
//否则的话修改指针,让之前链尾的after指针指向p,p的before指向之前链尾
p.before = last;
last.after = p;
}
}
那么以上就完成了在插入新值时将其插入双向链表链尾,那么接下来put()更新值则节点移动至链尾怎么实现的呢?
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//在节点被访问后移动链尾
afterNodeAccess(e);
return oldValue;
}
}
HashMap的put()方法早已包含此方法,不过尚未实现,而LinkedHashMap则实现了此方法:
void afterNodeAccess(Node e) { // move node to last
LinkedHashMap.Entry last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry p =
(LinkedHashMap.Entry)e, b = p.before, a = p.after;
// 因为要移动到链尾,所以先至尾指针为空
p.after = null;
//如果前面没有元素,则p之前为头结点,直接让a成为头结点
if (b == null)
head = a;
else
// 否则b的尾指针指向a
b.after = a;
if (a != null)
//如果a不为空,则a的头指针指向b
a.before = b;
else
//否则 p之前就为尾指针,则另b成为尾指针
last = b;
if (last == null)
//如果双向链表中只有p一个节点,则令p即为头结点,也为尾节点
head = p;
else {
//否则 将p插入链尾
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
/**
* p将引用移除
* b | p | a
* ------------- | ------------- | -------------
* |before| after| <==|==> |before| after| <==|==> |before| after|
* ------------- | ------------- | -------------
*
* 1.b为NULL时,则a变为头结点
* head
* a p
* (b) ------------- -------------
* NULL <------ |before| after| ...... |before| after| (p最后将插入链尾)
* ------------- -------------
* 2.a为NULL时,则b变为链尾节点
*
* tail
* b p
* ------------- (a) -------------
* |before| after| -------> NULL ...... |before| after| (p最后将插入链尾)
* ------------- -------------
* 3.a,b都为NULL时,p即为头结点,又为尾节点
*
* 因为p前后都没有元素,则双向链表中只有p一个节点
*
*/
LinkedHashMap重写了get()方法,实现了LRU
public V get(Object key) {
Node e;
if ((e = getNode(hash(key), key)) == null)
return null;
// accessOder为true时,被访问的节点被置于双向链表尾部
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
此外HashMap的putVal()方法,还调用了afterNodeInsertion()方法,
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
即当插入时,将双向链表的头结点移除,这几个方法让LinkedHashMap实现了LRU算法。不过removeEldestEntry()默认是返回false的,需要子类继承重写removeEldestEntry()方法。
LinkedHashMap的remove()方法也是调用的HashMap的remove()方法,
public V remove(Object key) {
Node e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node[] tab; Node p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
//回调从双向链表中移除node
afterNodeRemoval(node);
return node;
}
}
return null;
}
同样的也有一个afterNodeRemoval()回调方法,用于将节点从双向链表移除
LinkedHashIterator() {
next = head;
expectedModCount = modCount;
current = null;
}
public final boolean hasNext() {
return next != null;
}
final LinkedHashMap.Entry nextNode() {
LinkedHashMap.Entry e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
current = e;
next = e.after;
return e;
}
我们可以看到,LlinkedHashMap的iterator也是遍历的双向链表。说了这么多
其实想一想也是很简单的,不过就是Node多了两个指针而已嘛=v=