【表情识别】数据集处理

数据集采用的是fer2013,该如果不想麻烦自己去官网下载,可以贡献一分( ̄▽ ̄)到

https://download.csdn.net/download/idwtwt/10590806

fer2013.tar.gz解压之后可以得到fer2013.csv,想了解csv格式请自行百度,该格式文件可以用office表格软件打开

【表情识别】数据集处理_第1张图片

可以看到其实就三列——emotion,pixels,Usage

emotion:标签,共有7个标签,分别是:0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral

pixels:人脸表情图片数据,是48*48个像素点。 

Usage:有三种值Training,PublicTest,PrivateTest

些图片文件件可以使用opencv-python库

# Courtesy of Kaggle user 'NoBugs'
# Transforms string of numbers in .csv to image and saves it

import numpy as np
import cv2
import pandas as pd
import random
import os

curdir = os.path.abspath(os.path.dirname(__file__))

def gen_record(csvfile,channel):
    data = pd.read_csv(csvfile,delimiter=',',dtype='a')
    labels = np.array(data['emotion'],np.float)

    imagebuffer = np.array(data['pixels'])
    #删掉空格,每个图片转化为数组
    images = np.array([np.fromstring(image,np.uint8,sep=' ') for image in imagebuffer])
    #s释放临时buff
    del imagebuffer

    #最后一个维度的大小
    num_shape = int(np.sqrt(images.shape[-1]))

    #调整数组为48*48图片
    images.shape = (images.shape[0],num_shape,num_shape)

    # 三种Training,PublicTest,PrivateTest
    dirs = set(data['Usage'])

    class_dir = {}


    for dr in dirs:
        dest = os.path.join(curdir,dr)
        class_dir[dr] = dest
        if not os.path.exists(dest):
            os.mkdir(dest)

    data = zip(labels,images,data['Usage'])

    for d in data:
        label = int(d[0])
        #根据标签存放图片到不同文件夹
        destdir = os.path.join(class_dir[d[2]],str(label))

        if not os.path.exists(destdir):
            os.mkdir(destdir)

        img = d[1]
        filepath = unique_name(destdir,d[2])
        print('[^_^] Write image to %s' % filepath)

        if not filepath:
            continue

        sig = cv2.imwrite(filepath,img)
        if not sig:
            print('Error')
            exit(-1)


def unique_name(pardir,prefix,suffix='jpg'):
    #生成随机文件名
    filename = '{0}_{1}.{2}'.format(prefix,random.randint(1,10**8),suffix)
    filepath = os.path.join(pardir,filename)
    if not os.path.exists(filepath):
        return filepath
    unique_name(pardir,prefix,suffix)


if __name__ == '__main__':
    filename = './fer2013/fer2013.csv'
    filename = os.path.join(curdir,filename)
    gen_record(filename,1)

完成之后,图片数据分放到三个文件夹:Training,PublicTest,PrivateTest,在每个文件夹内,有包含0-6共七个文件夹,没分存放不同标签的表情图片。而实际上数据集不是特别大,完全可以考虑直接放在内存中,而不是转换为图片文件,一张一张地读取数据。

    def _load_fer2013(self):
        data = pd.read_csv(self.dataset_path)
        pixels = data['pixels'].tolist()
        width, height = 48, 48
        faces = []
        for pixel_sequence in pixels:
            face = [int(pixel) for pixel in pixel_sequence.split(' ')]
            # 将数组转换为48*48的二维矩阵
            face = np.asarray(face).reshape(width, height)
           #根据需要缩放
            face = cv2.resize(face.astype('uint8'), self.image_size)
            faces.append(face.astype('float32'))
        faces = np.asarray(faces)
        faces = np.expand_dims(faces, -1)
        emotions = pd.get_dummies(data['emotion']).as_matrix()
        return faces, emotions

 

你可能感兴趣的:(python,Tensorflow)