- 深入探索Spark MLlib:大数据时代的机器学习利器
concisedistinct
人工智能mllibspark-mlSparkMLlib大数据机器学习
随着大数据技术的迅猛发展,机器学习在各行各业的应用日益广泛。ApacheSpark作为大数据处理的利器,其内置的机器学习库MLlib(MachineLearningLibrary)提供了一套高效、易用的工具,用于处理和分析海量数据。本文将深入探讨SparkMLlib,介绍其核心功能和应用场景,并通过实例展示如何在实际项目中应用这些工具。一、SparkMLlib概述1.什么是SparkMLlib?S
- Spark Streaming 容错机制详解
goTsHgo
spark-streaming大数据分布式spark-streaming大数据分布式
SparkStreaming是Spark生态系统中用于处理实时数据流的模块。它通过微批处理(micro-batch)的方式将实时流数据进行分片处理,每个批次的计算本质上是Spark的批处理作业。为了保证数据的准确性和系统的可靠性,SparkStreaming实现了多种容错机制,包括数据恢复、任务失败重试、元数据恢复等。接下来,我们将从底层原理和源代码的角度详细解释SparkStreaming是如何
- Spark提交任务
docsz
sparkspark大数据
1、Spark提交任务到Yarn1.1、DwKuduAppspark-submit--classcom.io.etl.dwkudu.DwKuduApp\--files/etl/etl-dwkudu/conf/doris.property,/etl/etl-dwkudu/conf/redis.property,/etl/etl-dwkudu/conf/log4j.property\--mastery
- 如何使用GraphX在Spark中进行图计算
python资深爱好者
spark大数据分布式
GraphX是ApacheSpark的一个图计算框架,它允许开发者在分布式环境中进行大规模的图数据处理和分析。以下是如何使用GraphX在Spark中进行图计算的基本步骤:1.环境准备首先,确保你已经安装了ApacheSpark,并且你的Spark版本支持GraphX。GraphX是Spark的一个组件,因此通常与Spark一起安装。2.导入GraphX库在你的Spark应用程序中,你需要导入Gr
- 在Spark中如何配置Executor内存以优化性能
python资深爱好者
sparkjava大数据
在Spark中,配置Executor内存以优化性能是一个关键步骤。以下是一些具体的配置方法和建议:一、Executor内存配置参数在Spark中,Executor的内存配置主要通过以下几个参数进行:--executor-memory或spark.executor.memory:指定每个Executor进程的内存大小。这个参数对Spark作业运行的性能影响很大。适当增加每个Executor的内存量,
- 什么容错性以及Spark Streaming如何保证容错性
python资深爱好者
spark大数据分布式
一、容错性的定义容错性是指一个系统在发生故障或崩溃时,能够继续运行并提供一定服务的能力。在网络或系统中,这通常涉及到物理组件损坏或软件失败时系统的持续运行能力。容错系统的关键特性包括负载平衡、集群、冗余、复制和故障转移等。二、SparkStreaming保证容错性的方法SparkStreaming为了保证数据的准确性和系统的可靠性,实现了多种容错机制,主要包括以下几个方面:元数据的容错性:Spar
- Spark集群架构
情深不仅李义山
sparkspark大数据
文章目录Spark架构Spark执行任务流程Spark运行环境SparkonYARNSparkStandaloneSpark架构Spark可以运行在YARN上也可以运行Mesos上,无论运行在哪个集群管理架构上,Spark都是以主从架构运行程序。主节点会运行Driver进程,该进程会调用Spark程序的main方法,启动SparkContext;Executor就是从节点的进程,该进程负责执行Dr
- 四、spark集群架构
weixin_34411563
大数据开发工具
spark集群架构官方文档:http://spark.apache.org/docs/latest/cluster-overview.html集群架构我们先看这张图这张图把spark架构拆分成了两块内容:1)spark应用程序:即左边的DriverProgram这块;2)spark集群:即右边的ClusterManager和另外两个WorkerNode;这样的结构,我们大概可以猜测一下spark是
- Spark集群架构介绍
olifchou
Sparksparkapachespark大数据分布式
Spark之YARN介绍一、导语二、Spark及其特性三、Spark架构总览一、导语ApacheSpark(后续简称为Spark)是一款正在点燃大数据世界的开源集群计算框架。据SparkCertifiedExperts显示,在内存中运行时,Sparks性能要比Hadoop快一百倍,在磁盘上运行,Sparks比Hadoop快达十倍。在本篇博客中,我将会为你简单介绍一下Spark的底层基础架构。二、S
- Spark Standalone集群架构
htfenght
sparkspark
北风网spark学习笔记SparkStandalone集群架构SparkStandalone集群集群管理器,clustermanager:Master进程,工作节点:Worker进程搭建了一套Hadoop集群(HDFS+YARN)HDFS:NameNode、DataNode、SecondaryNameNodeYARN:ResourceManager、NodeManagerSpark集群(Spark
- Spark----Spark 在不同集群中的架构
XiaodunLP
Spark
Spark注重建立良好的生态系统,它不仅支持多种外部文件存储系统,提供了多种多样的集群运行模式。部署在单台机器上时,既可以用本地(Local)模式运行,也可以使用伪分布式模式来运行;当以分布式集群部署的时候,可以根据自己集群的实际情况选择Standalone模式(Spark自带的模式)、YARN-Client模式或者YARN-Cluster模式。Spark的各种运行模式虽然在启动方式、运行位置、调
- spark1.x和spark2.x的区别
xuxu1116
sparkspark1.x与2.x的区别
spark2.x版本相对于1.x版本,有挺多地方的修改,1Spark2ApacheSpark作为编译器:增加新的引擎Tungsten执行引擎,比Spark1快10倍2ml做了很大的改进,支持协同过滤http://spark.apache.org/docs/latest/ml-collaborative-filtering.html3spark2org.apache.spark.sql加了Spark
- spark程序提交到集群上_Spark集群模式&Spark程序提交
毫无特色
spark程序提交到集群上
Spark集群模式&Spark程序提交1.集群管理器Spark当前支持三种集群管理方式Standalone—Spark自带的一种集群管理方式,易于构建集群。ApacheMesos—通用的集群管理,可以在其上运行HadoopMapReduce和一些服务应用。HadoopYARN—Hadoop2中的资源管理器。Tip1:在集群不是特别大,并且没有mapReduce和Spark同时运行的需求的情况下,用
- 基于docker-compose安装spark 1+3及Spark On Yarn模式集群
dh12313012
docker-composesparkdocker
基于docker-compose安装spark1+3及SparkOnYarn模式集群1、`docker-compose.yml`:2、`spark.env`:此处的样例是参考别人的,之后自己整合一套可以使用的1+3模式的集群。spark镜像可以自行在dockerhub选择自己想要的进行替换即可。备注:此处未开启日志功能,在WEB界面上面找不到log的,如需开启,可自行添加参数或自己进入容器手动修改
- spark vi基本使用
Freedom℡
spark
打开文件与创建文件是Linux的内置命令,以命令的方式来运行。命令格式:vi/路径/文件名注意以下两种情况:1.如果这个文件不存在,此时就是新建文件,编辑器的左下角会提示:newfile2.如果文件已存在,此时就打开这个文件,进入命令模式。把文本内容添加到一个全新的文件的快捷方式:echo1>>1.txt三种模式vi编辑器有三种工作模式,分别为:命令模式,输入模式,底线模式。命令模式:所敲按键编辑
- Spark(1)
Freedom℡
spark
阶段性:一、单机时代特点:1.硬件资源有限:单机系统的计算能力、存储容量和内存空间都受限于单台计算机的硬件配置。例如早期的个人电脑,通常只有几百兆的内存和几GB的硬盘空间。2.数据处理能力有限:主要处理本地产生的小规模数据,数据量一般在MB级别到GB级别之间。如单机版的财务软件,只处理一个小型企业内部的少量财务数据。3.应用场景简单:主要用于个人办公、简单的游戏娱乐或小型企业的基本业务处理,如文字
- 架构师论文《论湖仓一体架构及其应用》
pccai-vip
架构软考论文
软考论文-系统架构设计师摘要作为某省级商业银行数据中台建设项目技术负责人,我在2020年主导完成了从传统数据仓库向湖仓一体架构的转型。针对日益增长的支付流水、用户行为埋点及信贷审核影像文件等多模态数据处理需求,原有系统存在存储成本激增、实时分析能力不足等问题。新平台需整合12个核心业务系统数据资源,建设支持实时反欺诈、客户画像分析的高性能数据底座。本项目采用Iceberg+Spark架构实现湖仓一
- 【大数据分析】基于Spark哔哩哔哩数据分析舆情推荐系统 b站(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)
m0_74823471
面试学习路线阿里巴巴分布式数据分析spark
文章目录【大数据分析】基于Spark哔哩哔哩数据分析舆情推荐系统b站(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)?一、项目概述二、研究意义三、背景四、国内外研究现状五、开发技术介绍六、算法介绍?七、数据库设计?八、系统启动九、项目展示?十、开发笔记十一、权威教学视频链接【大数据分析】基于Spark哔哩哔哩数据分析舆情推荐系统b站(完整系统源码+数据库+开发笔记+详细部署教
- Spark性能调优方法总结
Cynthiaaaaalxy
spark大数据分布式
1、资源分配优化 Spark的分配资源主要就是executor、cpuperexecutor、memoryperexecutor、drivermemory等的调节,我们在生产环境中,提交spark作业时,用的spark-submitshell脚本,里面调整对应的参数:/usr/local/spark/bin/spark-submit–confspark.default.parallelism=1
- jmeter 与大数据生态圈中的服务进行集成
小赖同学啊
jmeter专栏jmeter大数据
以下为你详细介绍JMeter与大数据生态圈中几种常见服务(HadoopHDFS、Spark、Kafka、Elasticsearch)集成的方法:与HadoopHDFS集成实现思路HDFS是Hadoop的分布式文件系统,JMeter可模拟客户端对HDFS进行文件读写操作,通常借助HDFS的JavaAPI编写自定义JMeter采样器。步骤添加依赖:将Hadoop的客户端JAR包添加到JMeter的li
- Spark on Yarn 多机集群部署
晓夜残歌
spark大数据分布式
SparkonYarn多机集群部署1.规划机器角色服务器IP地址角色Master192.168.1.100NameNode+ResourceManager+SparkMasterWorker1192.168.1.101DataNode+NodeManager+SparkWorkerWorker2192.168.1.102DataNode+NodeManager+SparkWorker2.配置所有机
- Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_79856539
javaweb大数据pythonspark
本系统基于大数据设计并实现成都地铁客流量分析系统,使用网络爬虫爬取并收集成都地铁客流量数据,运用机器学习和时间序列分析等方法,对客流量数据进行预处理和特征选择,构建客流量预测模型,利用历史数据对模型进行训练和优化,实现客流量预测模型的部署和应用,通过系统界面展示预测结果。对预测模型进行评估和验证,并提出改进方案。设计步骤使用Python语言编写爬虫程序采集数据,并对原始数据集进行预处理;使用Pyt
- 搭建Spark On YARN集群
snow323H
sparkbigdatahadoop
一、SparkOnYARN架构二、搭建SparkOnYARN集群(一)搭建SparkStandalone集群(二)修改Spark环境配置文件SparkOnYARN模式的搭建比较简单,仅需要在YARN集群的一个节点上安装Spark即可,该节点可作为提交Spark应用程序到YARN集群的客户端。Spark本身的Master节点和Worker节点不需要启动。使用此模式需要修改Spark配置文件spark
- 对应chd5.14的spark_carbonData使用文档(基于CDH 的spark-yarn模式)
颜语一声
对应chd5.14的spark
一、部署(基于CDH的spark-yarn模式)下载源码编译(目前官网已经提供编译好的jar包了)【https://dist.apache.org/repos/dist/release/carbondata/】mvn-DskipTests-Pspark-2.1-Dspark.version=2.1.0cleanpackagemvn-DskipTests-Pspark-2.2-Dspark.vers
- yarn模式运行spark作业所有属性详解
weixin_34248487
大数据
摘要:Spark参数调优,可以大大提高工作中程序的运行效率。下面简单介绍一下这些常用的调优参数属性名称默认值含义spark.yarn.am.memory512mclient模式下,YARNApplicationMaster使用的内存总量spark.yarn.am.cores1client模式下,ApplicationMaster使用的cpu数量spark.driver.cores1cluster模
- Spark on YARN的重要参数
大米饭精灵
SparkYarnSparkYarn
Spark属性或者去源码找Class类SparkSubmitArguments,最全了属性名称默认含义spark.yarn.am.memory512m用于客户端模式下的YARNApplicationMaster的内存量,格式与JVM内存字符串(例如512m,2g)相同。在集群模式下,spark.driver.memory改为使用。使用小写字母后缀,例如k,m,g,t,和p,为kibi-,mebi-
- 大数据-257 离线数仓 - 数据质量监控 监控方法 Griffin架构
m0_74823705
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!目前开始更新MyBatis,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)ClickHouse(已
- spark sql随记
cxy1991xm
spark
1、sparksql访问hive将hive-site.xml放入到${SPARK_HOME}/conf下如果是sparkonyarn的cluster模式,由于driver是运行于哪个executor未知,因此在spark-defaults.conf中指定参数spark.yarn.dist.filesxxx/hive-site.xml
- 计算机毕业设计吊炸天Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_80213251
javajavaweb大数据课程设计python
开发技术SparkHadoopPython爬虫Vue.jsSpringBoot机器学习/深度学习人工智能创新点Spark大屏可视化爬虫预测算法功能1、登录注册界面,用户登录注册,修改信息2、管理员用户:(1)查看用户信息;(2)出行高峰期的10个时间段;(3)地铁限流的10个时间段;(4)地铁限流的前10个站点;(6)可视化大屏实时显示人流量信息。3、普通用户:(1)出行高峰期的10(5)可视化大
- Python 的 WebSocket 实现详解
王子良.
经验分享pythonwebsocket网络协议网络
欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark、Fli
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不