1、训练模型
##包括损失函数,优化器,可视化等操作
2、测试
定义网络:
input
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1) #展开成一维的
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
output
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
数据处理与加载:
input
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化
# 定义对数据的预处理
#torchvision.transforms是pytorch中的图像预处理包
#一般用Compose把多个步骤整合到一起
transform = transforms.Compose([
transforms.ToTensor(), # 转为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
])
# 训练集
trainset = tv.datasets.CIFAR10(
root='./data/',
train=True,
download=True,
transform=transform)
trainloader = t.utils.data.DataLoader( #训练数据加载,将每4个拼成一个批次
trainset,
batch_size=4,
shuffle=True, # shuffle打乱数据顺序
num_workers=2) # 加载数据时使用多少子进程。默认值为0,表示在主进程中加载数据。
# 测试集
testset = tv.datasets.CIFAR10(
'./data/',
train=False,
download=True,
transform=transform)
testloader = t.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
output
Files already downloaded and verified
Files already downloaded and verified
主程序:
from torch import optim
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 优化器
1、训练模型
t.set_num_threads(8) # 设置cpu利用率
for epoch in range(2):
running_loss = 0.0 #初始化loss
for i, data in enumerate(trainloader, 0): #enumerate枚举训练器中数据,参考[enumerate](https://www.runoob.com/python/python-func-enumerate.html)
# 输入数据
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
# 更新参数
optimizer.step()
# 打印log信息
# loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
running_loss += loss.item()
if i % 2000 == 1999: # 每2000个batch打印一下训练状态
print('[%d, %5d] loss: %.3f', % (epoch+1, i+1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
2、测试
#**测试图像的实际labels**
dataiter = iter(testloader) #把测试数据放在迭代器iter
images, labels = dataiter.next() # 一个batch返回4张图片,依次获取下一个数据
print('实际的label: ', ' '.join( '%08s'%classes[labels[j]] for j in range(4)))
# make_grid将若干图像拼接成一幅,(images/2 - 0.5)是为了还原被归一化的数据
show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100))
# **网络测试结果的labels**
# 计算图片在每个类别上的分数
outputs = net(Variable(images))
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1) # max(output.data, 1)是将4*10维的数据,取每一行上的最大值,返回最大值和序号
print('预测结果: ', ' '.join('%5s'% classes[predicted[j]] for j in range(4)))
#整个测试集上预测
correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数
# 由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存
with t.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = t.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))
每一类分类情况
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with t.no_grad():
for data in testloader:
images,labels = data
outputs = net(images)
_,predicted = t.max(outputs,1)
c = (predicted==labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i],100 * class_correct[i] / class_total[i]))