用YOLOv3训练、测试自己的数据

申明:这里参考借鉴了一份ppt,但未找到所属者,如作者看到请及时联系。

下载模型及权重文件

模型下载地址:https://github.com/pjreddie/darknet
权重下载地址:https://pjreddie.com/darknet/yolo/

安装

参考https://blog.csdn.net/uncle_ll/article/details/80830112
CPU版本

    git clone https://github.com/pjreddie/darknet.git
    cd darknet
    make

这里如果自己的电脑支持Openmp的话,也可以更改Makefile文件将其中的OPENMP的值更改为1,会加快训练和测试速度

GPU=0
CUDNN=0  
OPENCV=0
OPENMP=0 # 若电脑支持Openmp时,可以将其设置为1
DEBUG=0

GPU版本
进入Makefile

vim Makefile

修改编译参数

GPU=1 # 设置为1
CUDNN=1 # 设置为1
OPENCV=1 # 若后续想用opencv进行处理,可以将其设置为1
OPENMP=0
DEBUG=0
 
ARCH= -gencode arch=compute_30,code=sm_30 \
      -gencode arch=compute_35,code=sm_35 \
      -gencode arch=compute_50,code=[sm_50,compute_50] \
      -gencode arch=compute_52,code=[sm_52,compute_52] \   
      -gencode arch=compute_60,code=[sm_60,compute_60]                                                                                                                                                                                                       # 这个地方是根据自己的GPU架构进行设置,不同架构的GPU的运算能力不一样,本文使用的是帕斯卡结构,查阅英伟达官网查看对应的计算能力为6.0            #  -gencode arch=compute_20,code=[sm_20,sm_21] \ This one is deprecated?                                                   # This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52
VPATH=./src/:./examples
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/
CC=gcc
NVCC=nvcc # 这个地方若没有定义为环境变量,最好是使用绝对路径,大概位于`/usr/local/cuda/bin/nvcc`

数据形式介绍

1、数据分为图片和标注。二者为一一对应关系
2、标注可用LabelImg等标注软件生成

用YOLOv3训练、测试自己的数据_第1张图片

数据导入及配套文件生成

1.在darknet目录下创建一个新文件夹
2.在该文件夹下创建两个文件夹分别存放图片和xml标注文件
3.生成train.txt、val.txt、test.txt以及将标注文件转成txt格式
我的脚本:https://github.com/yuace/yolo_python
4.记录类别名称的.names文件
用YOLOv3训练、测试自己的数据_第2张图片

修改配置文件

1.修改cfg文件夹中的.data文件
用YOLOv3训练、测试自己的数据_第3张图片
2.修改cfg文件夹中的.cfg文件
在[net]层修改batch大小及调整迭代步长;
用YOLOv3训练、测试自己的数据_第4张图片
修改[yolo]层的classes,并将[yolo]层上一层的[convolutional]层的filters值按照如下公式修改:
filters = (classes + 5)*3
修改anchors,改为我们聚类的9个中心点
我的聚类脚本:https://github.com/yuace/yolo_python/blob/master/kmeans.py 用YOLOv3训练、测试自己的数据_第5张图片
注意:如果classes = 20,则filters = 75。注意网络中一共有3个yolo层,因此上述步骤一共要修改3次

训练、验证、测试

1.训练:

./darknet  detector  train  cfg/xxx.data  cfg/yolov3.cfg  pretrained.weights

我们通常使用预训练权重来训练:

wget https://pjreddie.com/media/files/darknet53.conv.74//下载预训练
./darknet detector train cfg/xxx.data cfg/yolov3.cfg darknet53.conv.74

多gpu训练:

./darknet detector train cfg/xxx.data cfg/yolov3.cfg darknet53.conv.74 -gpus 0,1,2,3

如果中断,想继续训练,只需将预训练权重换成我们保存的权重即可。
2.验证:

./darknet  detector  recall  cfg/xxx.data  cfg/yolov3.cfg  trained.weights 

3.测试:

./darknet  detector  test  cfg/xxx.data  cfg/yolov3.cfg  trained.weights  xxx.jpg 

(注意:验证和测试时,将.cfg文件中的batch和subdivisions均改为1)

批量测试图片并保存在自定义文件夹下

参考:https://blog.csdn.net/mieleizhi0522/article/details/79989754
1.用下面代码替换detector.c文件(example文件夹下)的void test_detector函数(注意有3处要改成自己的路径)

void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
{
    list *options = read_data_cfg(datacfg);
    char *name_list = option_find_str(options, "names", "data/names.list");
    char **names = get_labels(name_list);
 
    image **alphabet = load_alphabet();
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);
    double time;
    char buff[256];
    char *input = buff;
    float nms=.45;
    int i=0;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
            image im = load_image_color(input,0,0);
            image sized = letterbox_image(im, net->w, net->h);
        //image sized = resize_image(im, net->w, net->h);
        //image sized2 = resize_max(im, net->w);
        //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);
        //resize_network(net, sized.w, sized.h);
            layer l = net->layers[net->n-1];
 
 
            float *X = sized.data;
            time=what_time_is_it_now();
            network_predict(net, X);
            printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
            int nboxes = 0;
            detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
            //printf("%d\n", nboxes);
            //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
            if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
                draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
                free_detections(dets, nboxes);
            if(outfile)
             {
                save_image(im, outfile);
             }
            else{
                save_image(im, "predictions");
#ifdef OPENCV
                cvNamedWindow("predictions", CV_WINDOW_NORMAL); 
                if(fullscreen){
                cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
                }
                show_image(im, "predictions");
                cvWaitKey(0);
                cvDestroyAllWindows();
#endif
            }
            free_image(im);
            free_image(sized);
            if (filename) break;
         } 
        else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
   
            list *plist = get_paths(input);
            char **paths = (char **)list_to_array(plist);
             printf("Start Testing!\n");
            int m = plist->size;
            if(access("/home/xxxl/darknet/data/out",0)==-1)//"/home/xxx/darknet/data"修改成自己的路径
            {
              if (mkdir("/home/xxx/darknet/data/out",0777))//"/home/xxx/darknet/data"修改成自己的路径
               {
                 printf("creat file bag failed!!!");
               }
            }
            for(i = 0; i < m; ++i){
             char *path = paths[i];
             image im = load_image_color(path,0,0);
             image sized = letterbox_image(im, net->w, net->h);
        //image sized = resize_image(im, net->w, net->h);
        //image sized2 = resize_max(im, net->w);
        //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);
        //resize_network(net, sized.w, sized.h);
        layer l = net->layers[net->n-1];
 
 
        float *X = sized.data;
        time=what_time_is_it_now();
        network_predict(net, X);
        printf("Try Very Hard:");
        printf("%s: Predicted in %f seconds.\n", path, what_time_is_it_now()-time);
        int nboxes = 0;
        detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
        //printf("%d\n", nboxes);
        //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
        if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
        draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
        free_detections(dets, nboxes);
        if(outfile){
            save_image(im, outfile);
        }
        else{
             
             char b[2048];
            sprintf(b,"/home/xxx/darknet/data/out/%s",GetFilename(path));//"/home/xxx/darknet/data"修改成自己的路径
            
            save_image(im, b);
            printf("save %s successfully!\n",GetFilename(path));
#ifdef OPENCV
            cvNamedWindow("predictions", CV_WINDOW_NORMAL); 
            if(fullscreen){
                cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
            }
            show_image(im, "predictions");
            cvWaitKey(0);
            cvDestroyAllWindows();
#endif
        }
 
        free_image(im);
        free_image(sized);
        if (filename) break;
        }
      }
    }
}

2,在前面添加*GetFilename(char *p)函数(注意后面的注释)

#include "darknet.h"
#include 
#include
#include
#include
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
char *GetFilename(char *p)
{ 
    static char name[20]={""};
    char *q = strrchr(p,'/') + 1;
    strncpy(name,q,6);//注意后面的6,如果你的测试集的图片的名字字符(不包括后缀)是其他长度,请改为你需要的长度(官方的默认的长度是6)
    return name;
}

3.在darknet下重新make

make clean
make

4.执行批量测试命令会出现如下

Loading weights from yolov3.weights...Done!
Enter Image Path:

Enter Image Path:后面输入你的txt文件路径(你准备好的所有测试图片的路径全部存放在一个txt文件里),如下

/home/xxx/darknet/data/test.txt

之后就可以去自己的定义的out文件夹看结果了。

你可能感兴趣的:(深度学习,yolo)