TC流量控制实现分析(初步)

本文档的Copyleftwwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。

E-mail[email protected]

来源: http://blog.csdn.net/wwwlkk

(一)基本概念

为了更好的描述TC流量控制,先明确一些概念。

流控对象:队列规定。

无类流控对象:无类队列规定。

分类流控对象:分类的队列规定。

每个分类流控对象都有默认的子流控对象,默认的子流控对象必定是无类流控对象。

子流控对象:分类流控对象中包含的流控对象。

无类流控对象必定包含一个或者多个的数据包队列,用于存储数据包。

无类和分类流控对象都有默认的分类规定,也可以使用过滤器增加分类规则。

分类流控对象是流控对象的容器(包含无类和分类),无类流控对象是数据包的容器。(注意:一些复杂的流控对象可同时作为流控对象和数据包的容器,比如分层的令牌桶)

数据包进入一个分类流控对象,分类流控对象将根据分类规则(默认的或者过滤器),决定将数据包送到某个子流控对象。

数据包进入一个无类流控对象,无类流控对象将根据分类规则(默认的或者过滤器),决定将数据包加入到某个数据包队列。

分类流控对象出队操作:分类流控对象将根据出队规则(固定的),选择一个子流控对象,并执行子流控对象的出队操作。

无类流控对象出队操作:无类流控对象将根据出队规则(固定的),选择一个数据包出队。

每块网卡都有一个出口根流控对象。每个流控对象都指定一个句柄,以便以后的配置语句能够引用这个流控对象。除了出口流控对象之外,每块网卡还有一个入口流控对象,入口流控对象的类型是固定的(ingress类型)

运行流控对象:都是指运行出口流控对象,也就是根据出口流控对象的出队规则(固定的),发送流控对象中的所有数据包。

流控对象为空:流控对象中没有数据包。

入口流控对象没有真正意义上的出队和入队操作,只是根据过滤规则来决定是否丢弃数据包,流控的实现主要在出口流控对象,下面先分析出口流控的实现。

(二)运行出口流控对象

数据到达出口流控时,上层的所有处理已经完成,数据包已经可以交到网卡设备进行发送,在数据交到网卡设备发送前将会进入出口流控,进入出口流控的函数为dev_queue_xmit(); 如果是入口流控数据只是刚从网卡设备中收到还未交到网络上层处理不过网卡的入口流控不是必须的缺省情况下并不进行流控,进入入口流控函数为ing_filter()函数,该函数被skb_receive_skb()调用。

dev_queue_xmit中进入出口流控对象的函数段如下:

       txq = dev_pick_tx(dev, skb);//获取出口流控的控制结构

       q = rcu_dereference(txq->qdisc);//获取出口流控的根流控对象

       if (q->enqueue) {

              rc = __dev_xmit_skb(skb, q, dev, txq);//使用流控对象发送数据包(包含入队和出队)

              goto out;

       }

__dev_xmit_skb函数主要做两件事情:

1.      如果流控对象为空的,试图直接发送数据包。

2.      如果流控对象不空,将数据包加入流控对象,并运行流控对象。

 

调用qdisc_run()将会运行一个流控对象,有两个时机将会调用qdisc_run()

1__dev_xmit_skb()

2. 软中断服务线程NET_TX_SOFTIRQ

软中断线程NET_TX_SOFTIRQ中将会运行的流控对象组织如下:

 

软中断中的流控对象组织

 

 

static inline void qdisc_run(struct Qdisc *q)

{

       if (!test_and_set_bit(__QDISC_STATE_RUNNING, &q->state))//测试是否有其他例程正在运行本对象

              __qdisc_run(q);

}

__QDISC_STATE_RUNNING标志用于保证一个流控对象不会同时被多个例程运行。

软中断线程的动作:运行加入到output_queue链表中的所有流控对象,如果试图运行某个流控对象时,发现已经有其他内核路径在运行这个对象,直接返回,并试图运行下一个流控对象。

void __qdisc_run(struct Qdisc *q)//运行流控对象q

{

       unsigned long start_time = jiffies;

       while (qdisc_restart(q)) {//返回值大于0,说明流控对象非空。

              

              if (need_resched() || jiffies != start_time) {//已经不允许继续运行本流控对象。

                     __netif_schedule(q);//将本队列加入软中断的output_queue链表中。

                     break;

              }

       }

       clear_bit(__QDISC_STATE_RUNNING, &q->state);

}

如果发现本队列运行的时间太长了,将会停止队列的运行,并将队列加入output_queue链表头。

 

现在数据包的发送流程可以总结如下:(流控对象为空表示对象中没有数据包)

1.      调用dev_queue_xmit()发送一个数据包,如果出口流控对象为空,试图直接发送数据包。

2.      如果出口流控对象非空,数据包加入出口流控对象。

3.      调用qdisc_run(struct Qdisc *q)运行出口流控对象,也就是,调用对象对象的出队函数选择一个数据包,并发送这个数据包,如果时间允许就循环执行这个过程,直到流控对象为空。注意:如果已经有其他内核路径正在运行队列,函数将不做任何事情,并提前返回。

4.      本流控对象运行时间太长了,停止本对象运行,并且将本流控对象加入软中断服务NET_TX_SOFTIRQoutput_queue链表头。

5.      当执行软中断服务线程NET_TX_SOFTIRQ时,将从output_queue链表头开始顺序运行链表中的所有流控对象。

 

(三)流控对象的具体实现

3.1)建立一个根流控对象

下面使用具体的例子来说明流控对象的具体实现

首先使用如下命令在eth0建立一个根流控对象。

#tc qdisc add dev eth0 root handle 22 prio bands 4

其中流控对象的类型是”prio”,对象句柄是22,对象使用4个带(也就是包含4个子流控对象,默认的子流控对象类型是”pfifo”,出队时第一个子流控对象的优先级最高)

则内核中建立的流控对象如图23所示:

3  建立”prio”类型的根流控对象_2

这个prio流控对象的句柄是22,使用4个带,每个带都是一个pfifo类型的对象,每个pfifo类型的对象都有一个数据包队列,用于存储数据包。根据数据包的skb->priority值确定数据包加入哪个带,这里使用默认的prio2band,默认的skb->priority值与带的对应关系如图3中所示。

 

现在假设要发送一个skb->priority值是8的数据包,发送流程如下:

1.      使用网卡的根流控对象的入队函数将数据包入队

2.      由于未设置过滤器,则直接根据数据包的skb->priority=8找到对应的带是0,则将数据包加入第一个pfifo流控对象。

3.      调用pfifo流控对象的入队函数,将数据包加入对象中的数据包队列。

4.      调用qdisc_run()启动根流控对象。

5.      调用根流控对象的出队函数,函数内先选择第一个pfifo流控对象并调用其出队函数选择一个数据包,出队函数返回,如果第一个pfifo流控对象为空,选择第二个pfifo流控对象并调用其出队函数选择一个数据包,直到找到一个数据包。

6.      发送5找到的数据包。

7.      只要时间允许且流控对象不为空,就一直循环56的过程。

3.2)建立一个子流控对象

prio流控对象是分类对象,可以添加子对象(未添加子对象时使用默认子对象)

接下来使用以下命令在根队列的第4个带增加一个prio类型的子队列(此前第4个带是pfifo类型的对象,现在将替换为prio类型的对象。)

#tc qdisc add dev eth0 parent 22:4 handle 33 prio bands 5 priomap 3 3 2 2 1 2 0 0 1 1 1 1 1 1 1 1

这个prio对象是根对象的第4个带的子对象,句柄是33,并且这个子对象有5个带,skb->priority和带的映射关系是3 3 2 2 1 2 0 0 1 1 1 1 1 1 1 1

则内核中建立的子流控对象如图4所示:

 

3.3)添加一个过滤器

由于根对象的使用默认的prio2band映射,默认映射只映射前3个带,而prio子对象在第4个带,所以在这里,数据包是不会被加入prio子对象,下面使用过滤器将目的ip4.3.2.1的数据包加入到prio子对象,命令如下:

# tc filter add dev eth0 protocol ip parent 22: prio 2 u32 /

> match ip dst 4.3.2.1/32 flowid 22:4

在网卡eth0的根队列增加一个优先级是2且类型是u32的过滤器,过滤器将目的ip4.3.2.1的数据包定位到第4个带。

u32过滤器的结构如图5所示:

 

 

 

5 u32类型过滤器结构

其中val存储4.3.2.1的信息,off存储偏移位置(目的ip字段的偏移)

现在数据包的入队流程如下:

1.      根对象的过滤器链非空,遍历根对象的过滤器链,遇到第一个匹配的过滤器就返回,并根据返回的结果选择子类。

2.      每个过滤器都调用相应的分类函数,并根据过滤器的私有数据来匹配数据包。

 

3.4)流控类和过滤器类型的的组织

相同类型的对象将使用相同的操作函数(比如出/入队函数),相同类型的过滤器也是相同的操作函数(比如分类函数)。对象中struct Qdisc_ops    *ops字段指向并对象的操作函数,过滤器中struct tcf_proto_ops* ops字段指向本过滤器的操作函数。

下面看一下对象类型和过滤器类型是如何组织的:图6对象类型的组织,图7过滤器类型的组织。

 

 

对象类型组织

过滤器类型组织

使用int register_qdisc(struct Qdisc_ops *qops)注册对象类型。

使用int register_tcf_proto_ops(struct tcf_proto_ops *ops)注册过滤器类型。

以上分析了prio类型流控对象,pfifo类型流控对象,u32类型的过滤器的实现机制,内核还提供了很多其它的更复杂的流控对象和过滤器对象,有待进一步分析,但是基本的框架还是类似的。

 

3.5)入口流控对象

int netif_receive_skb(struct sk_buff *skb)à

skb = handle_ing(skb, &pt_prev, &ret, orig_dev);à

ing_filter(skb)

增加一个入口流控队列# tc qdisc add dev eth0 ingress

入口流控的对象类型必定是:

static struct Qdisc_ops ingress_qdisc_ops __read_mostly = {

       .cl_ops           =     &ingress_class_ops,

       .id           =     "ingress",

       .priv_size =     sizeof(struct ingress_qdisc_data),

       .enqueue  =     ingress_enqueue,

       .destroy   =     ingress_destroy,

       .dump            =     ingress_dump,

       .owner           =     THIS_MODULE,

};

入口流控对象的私有数据是:

struct ingress_qdisc_data {

       struct tcf_proto      *filter_list;

};

入口流控对象只有入队函数,没有出队函数。

入队动作:先遍历过滤器,如果某个过滤器匹配,执行action(接收或者丢弃数据包),并将结果返回,最终根据这个返回的结果决定是否丢弃数据包。

 

(四)用户空间如何和内核通信

iproute2是一个用户空间的程序,它的功能是解释以tc开头的命令,如果解释成功,把它们通过AF_NETLINKsocket传给Linux的内核空间,使用的netlink协议类型是NETLINK_ROUTE

发送的netlink数据包都必须包含两个字段:protocolmsgtype,内核根据这两个字段来定位接收函数。

在系统初始化的时候将会调用如下函数:

static int __init pktsched_init(void)

{

       register_qdisc(&pfifo_qdisc_ops);

       register_qdisc(&bfifo_qdisc_ops);

       register_qdisc(&mq_qdisc_ops);

       proc_net_fops_create(&init_net, "psched", 0, &psched_fops);

       rtnl_register(PF_UNSPEC, RTM_NEWQDISC, tc_modify_qdisc, NULL);

       rtnl_register(PF_UNSPEC, RTM_DELQDISC, tc_get_qdisc, NULL);

       rtnl_register(PF_UNSPEC, RTM_GETQDISC, tc_get_qdisc, tc_dump_qdisc);

       rtnl_register(PF_UNSPEC, RTM_NEWTCLASS, tc_ctl_tclass, NULL);

       rtnl_register(PF_UNSPEC, RTM_DELTCLASS, tc_ctl_tclass, NULL);

       rtnl_register(PF_UNSPEC, RTM_GETTCLASS, tc_ctl_tclass, tc_dump_tclass);

       return 0;

}

其中的rtnl_register()函数用于注册TC要接收的消息类型以及对应的接收函数。注册到图8所示的结构中。

 

接收函数的组织

下面以命令#tc qdisc add dev eth0 root handle 22 prio bands 4为例子说明如何进行通信的。

分析tcmain(int argc, char **argv)被调用,此函数在tc/tc.c中;

分析tc qdiscdo_qdisc(argc-2, argv+2);被调用,此函数在tc/tc_qdisc.c中;

分析tc qdisc add tc_qdisc_modify(RTM_NEWQDISC, NLM_F_EXCL|NLM_F_CREATE, argc-1, argv+1); 被调用,此函数在tc/tc_qdisc.c中,在这个函数中,将分析完这一行tc的命令,各种参数(例如RTM_NEWQDISC 被写到netlink包中,并且开始与核心通信。

Netlink包携带的数据如下

struct {

              struct nlmsghdr        n;

              struct tcmsg              t;

              char                  buf[TCA_BUF_MAX];

       } req;

       req.n.nlmsg_type = cmd; = RTM_NEWQDISC

       req.t.tcm_family = AF_UNSPEC;

内核是根据以上两个参数定位接收函数。

内核接收函数是static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)

根据以上两个参数选择接收函数:

doit = rtnl_get_doit(family, type);

从前面初始化时注册的处理函数是:

rtnl_register(PF_UNSPEC, RTM_NEWQDISC, tc_modify_qdisc, NULL);

可以知道对应的接收函数是:

static int tc_modify_qdisc(struct sk_buff *skb, struct nlmsghdr *n, void *arg)

 

通信总结如下:

1.      内核调用void rtnl_register(int protocol, int msgtype, rtnl_doit_func doit, rtnl_dumpit_func dumpit)将接收函数注册到rtnl_msg_handlers中。

2.      用户空间填充netlink数据包,使用的netlink协议是NETLINK_ROUTE

3.      内核根据netlink数据包中的protocolmsgtype字段,搜索rtnl_msg_handlers,定位接收函数。

 

 

 

 

 

建立”prio”类型的根流控对象_1

 

 

你可能感兴趣的:(TC流量控制实现分析(初步))