目录
0、相关文章:
1、源码分析:
2、为什么用LinkedHashMap
Glide--LruCache源码分析(文章一:阅读量152,1赞)
LruCache原理和用法与LinkedHashMap(文章二:阅读量6472,7赞)
java容器类LinkedHashMap源码分析
LruCache算法,又称为近期最少使用算法。主要算法原理就是把最近所使用的对象的强引用存储在LinkedHashMap上,并且,把最近最少使用的对象在缓存池达到预设值之前从内存中移除。
Glide中LruCache的源码:
public class LruCache {
private final LinkedHashMap cache = new LinkedHashMap<>(100, 0.75f, true);
private final int initialMaxSize;
private int maxSize;
private int currentSize = 0;
/**
* Constructor for LruCache.
*
* @param size The maximum size of the cache, the units must match the units used in {@link
* #getSize(Object)}.
*/
public LruCache(int size) {
this.initialMaxSize = size;
this.maxSize = size;
}
/**
* Sets a size multiplier that will be applied to the size provided in the constructor to put the
* new size of the cache. If the new size is less than the current size, entries will be evicted
* until the current size is less than or equal to the new size.
*
* @param multiplier The multiplier to apply.
*/
public synchronized void setSizeMultiplier(float multiplier) {
if (multiplier < 0) {
throw new IllegalArgumentException("Multiplier must be >= 0");
}
maxSize = Math.round(initialMaxSize * multiplier);
evict();
}
/**
* Returns the size of a given item, defaulting to one. The units must match those used in the
* size passed in to the constructor. Subclasses can override this method to return sizes in
* various units, usually bytes.
*
* @param item The item to get the size of.
*/
protected int getSize(Y item) {
return 1;
}
/**
* A callback called whenever an item is evicted from the cache. Subclasses can override.
*
* @param key The key of the evicted item.
* @param item The evicted item.
*/
protected void onItemEvicted(T key, Y item) {
// optional override
}
/**
* Returns the current maximum size of the cache in bytes.
*/
public synchronized int getMaxSize() {
return maxSize;
}
/**
* Returns the sum of the sizes of all items in the cache.
*/
public synchronized int getCurrentSize() {
return currentSize;
}
/**
* Returns true if there is a value for the given key in the cache.
*
* @param key The key to check.
*/
public synchronized boolean contains(T key) {
return cache.containsKey(key);
}
/**
* Returns the item in the cache for the given key or null if no such item exists.
*
* @param key The key to check.
*/
@Nullable
public synchronized Y get(T key) {
return cache.get(key);
}
/**
* Adds the given item to the cache with the given key and returns any previous entry for the
* given key that may have already been in the cache.
*
* If the size of the item is larger than the total cache size, the item will not be added to
* the cache and instead {@link #onItemEvicted(Object, Object)} will be called synchronously with
* the given key and item.
*
* @param key The key to add the item at.
* @param item The item to add.
*/
public synchronized Y put(T key, Y item) {
final int itemSize = getSize(item);
if (itemSize >= maxSize) {
onItemEvicted(key, item);
return null;
}
final Y result = cache.put(key, item);
if (item != null) {
currentSize += getSize(item);
}
if (result != null) {
// TODO: should we call onItemEvicted here?
currentSize -= getSize(result);
}
evict();
return result;
}
/**
* Removes the item at the given key and returns the removed item if present, and null otherwise.
*
* @param key The key to remove the item at.
*/
@Nullable
public synchronized Y remove(T key) {
final Y value = cache.remove(key);
if (value != null) {
currentSize -= getSize(value);
}
return value;
}
/**
* Clears all items in the cache.
*/
public void clearMemory() {
trimToSize(0);
}
/**
* Removes the least recently used items from the cache until the current size is less than the
* given size.
*
* @param size The size the cache should be less than.
*/
protected synchronized void trimToSize(int size) {
Map.Entry last;
while (currentSize > size) {
last = cache.entrySet().iterator().next();
final Y toRemove = last.getValue();
currentSize -= getSize(toRemove);
final T key = last.getKey();
cache.remove(key);
onItemEvicted(key, toRemove);
}
}
private void evict() {
trimToSize(maxSize);
}
}
LruCache采用的集合是LinkedHashMap,这个集合是HashMap的基础上增加了 数据链表的功能,可以看到下面这个构造函数,第一个是初始容量100, 第二个是碰撞因子0.75(即真实容量到达总容量的75%就开始扩容),第三个是链表顺序是否按访问顺序,关于这个容器的代码分析我们放在下一篇文章,在这里我们只需要知道这个集合能记录到你访问数据的次序,最近的访问的会放在链表的前面
private final LinkedHashMap cache = new LinkedHashMap<>(100, 0.75f, true);
initialMaxSize:初始大小,maxSize:最大,currentSize:当前 三个成员变量,创建时this.initialMaxSize 和this.maxSize 一样。 注意setSizeMultiplier函数的作用是传入一个变化乘数,改变当前的最大容量
private final int initialMaxSize;
private int maxSize;
private int currentSize = 0;
public LruCache(int size) {
this.initialMaxSize = size;
this.maxSize = size;
}
public synchronized void setSizeMultiplier(float multiplier) {
if (multiplier < 0) {
throw new IllegalArgumentException("Multiplier must be >= 0");
}
maxSize = Math.round(initialMaxSize * multiplier);
evict();
}
evict意思是驱逐,就是把数据清除出缓存,把容量缩减到小于等于maxSize,while循环,处理当前大小大于入参的情况,取出链表中的一个,获取其value的大小,清除,更新当前容器容量,直到符合要求
protected synchronized void trimToSize(int size) {
Map.Entry last;
while (currentSize > size) {
last = cache.entrySet().iterator().next();
final Y toRemove = last.getValue();
currentSize -= getSize(toRemove);
final T key = last.getKey();
cache.remove(key);
onItemEvicted(key, toRemove);
}
}
private void evict() {
trimToSize(maxSize);
}
获取item的大小,默认现在是1 。比如要实现一个Bitmap 缓存是需要返回大小的,缓存的大小是取决于所有bitmap的总大小和,而不是总个数
protected int getSize(Y item) {
return 1;
}
一个清除元素发生的回调,让LruCache 的继承者选择自己做要的事
protected void onItemEvicted(T key, Y item) {
// optional override
}
常规操作不解释
public synchronized int getMaxSize() {
return maxSize;
}
public synchronized int getCurrentSize() {
return currentSize;
}
public synchronized boolean contains(T key) {
return cache.containsKey(key);
}
@Nullable
public synchronized Y get(T key) {
return cache.get(key);
}
put操作,首先获取待加入的item 大小,如果大于缓存最大容量,就不放进去,直接调用onItemEvicte. 小于缓存最大容量,执行放入,item不为空,更新缓存当前大小。 执行放入的结果result就是说如果之前在容器内key存在,会执行替换value的操作,这时候result!=null,需要把替换出来的item的大小减去, 作者弄了个//TODO,不知道这里是否加上onItemEvicted 的回调,个人感觉应该加上,毕竟数据被清除缓存了,通知下,怎么处理交给继承者。 最后 evict(),因为单个待处理的item大小小于缓存最大容量,但是加入后,有可能超出,这里加个维护容量的代码
public synchronized Y put(T key, Y item) {
final int itemSize = getSize(item);
if (itemSize >= maxSize) {
onItemEvicted(key, item);
return null;
}
final Y result = cache.put(key, item);
if (item != null) {
currentSize += getSize(item);
}
if (result != null) {
// TODO: should we call onItemEvicted here?
currentSize -= getSize(result);
}
evict();
return result;
}
清除key出缓存,常规操作,维护当前缓存大小
public synchronized Y remove(T key) {
final Y value = cache.remove(key);
if (value != null) {
currentSize -= getSize(value);
}
return value;
}
让缓存容量小于等于0,起到clearMemory的作用
public void clearMemory() {
trimToSize(0);
}
LruCache原理和用法与LinkedHashMap(文章二:阅读量6472,7赞)
为什么要用LinkedHashMap来存缓存呢,这个跟算法有关,LinkedHashMap刚好能提供LRUCache需要的算法。
这个集合内部本来就有个排序功能,当第三个参数是true的时候,数据在被访问的时候就会排序,这个排序的结果就是把最近访问的数据放到集合的最后面。
到时候删除的时候就从前面开始删除。