R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记

深度学习班和视觉班寒老师和李老师讲过图像检测与识别,这篇笔记主要记录R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验。

R-FCN
paper: https://arxiv.org/abs/1605.06409
作者代码: https://github.com/daijifeng001/R-FCN  #matlab版本
这里使用python版本的代码: https://github.com/Orpine/py-R-FCN

1.下载代码
git clone  https://github.com/Orpine/py-R-FCN.git

2.克隆caffe
cd py-R-FCN
git clone  https://github.com/Microsoft/caffe.git  #Microsoft的源
[可选]
cd caffe
git reset --hard 1a2be8e

3.编译Cython模块
cd py-R-FCN/lib
make

4.编译caffe和pycaffe

这里Makefile.config要支持Python layers!

In your Makefile.config, make sure to have this line uncommented

WITH_PYTHON_LAYER := 1

cd py-R-FCN/caffe
cp Makefile.config.example Makefile.config 
make -j8 && make pycaffe

5.下载resnet caffemodel
从OneDriver下载rfcn_models  https://1drv.ms/u/s!AoN7vygOjLIQqUWHpY67oaC7mopf
解压到:py-R-FCN/data下
解压后的目录:
py-R-FCN/data/rfcn_models/resnet50_rfcn_final.caffemodel
py-R-FCN/data/rfcn_models/resnet101_rfcn_final.caffemodel

6.运行demo
python py-R-FCN/tools/demo_rfcn.py --net ResNet-50
python py-R-FCN/tools/demo_rfcn.py --net ResNet-101

ResNet-50效果图:



R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第1张图片


ResNet-101效果图:



R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第2张图片


7.准备训练和测试
笔者这里简单使用VOC2007,并且修改名称VOC0712,笔者把数据集直接放在py-R-FCN/data下
官网使用VOC2007和VOC2012,使用的时候要合并数据集,具体参考官网的Preparation for Training & Testing 第四点

8.下载ImageNet 与预训练的ResNet-50和ResNet-100
OneDriver: https://onedrive.live.com/%3Fa ... FF777 (在KaimingHe的github  https://github.com/KaimingHe/d ... works  )
mkdir py-R-FCN/data/imagenet_models
将model放到该目录

9.可自己修改模型,类别,修改相应的py-r-fcn/py-R-FCN/models/pascal_voc/目录下对应的文件和py-r-fcn/lib/datasets/pascal_voc.py。笔者这里还是使用默认的。

10.修改迭代次数
vi py-r-fcn/experiments/scripts/rfcn_end2end_ohem.sh
把pascal_voc的ITERS 调小

11.训练
./py-r-fcn/experiments/scripts/rfcn_end2end_ohem.sh 0 ResNet-50 pascal_voc 
其他训练方式请自行参考官网Usage

R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第3张图片


12.测试
将训练好的模型py-r-fcn/py-R-FCN/output/rfcn_end2end_ohem/voc_0712_trainval/resnet50_rfcn_ohem_iter_x.caffemodel,放到 py-r-fcn/py-R-FCN/data/rfcn_models 下,修改 py-R-FCN/tools/demo_rfcn.py的NETS,运行

SSD
paper: https://arxiv.org/abs/1512.02325
作者代码: https://github.com/weiliu89/caffe/tree/ssd

1.下载代码:
git clone  https://github.com/weiliu89/caffe.git
cd caffe
git checkout ssd

2.编译代码
cp Makefile.config.example Makefile.config
make -j8
make py
make test -j8
make runtest -j8

3.准备
1.下载caffemodel和prototxt 
https://gist.github.com/weiliu ... f81d6
从上边地址下载完放到/models/VGGNET/

4.下载VOC2007和VOC2012
cd /root/data
wget  http://host.robots.ox.ac.uk/pa ... 2.tar
wget  http://host.robots.ox.ac.uk/pa ... 7.tar
wget  http://host.robots.ox.ac.uk/pa ... 7.tar
tar -xvf VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar

5.创建LMDB文件
cd $CAFFE_ROOT
./data/VOC0712/create_list.sh
./data/VOC0712/create_data.sh

6.训练模型
python examples/ssd/ssd_pascal.py 
也可以从这里 http://www.cs.unc.edu/%257Ewli ... ar.gz  下训练好的模型。

7.评估模型
python examples/ssd/score_ssd_pascal.py

R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第4张图片


8.测试模型
python examples/ssd/ssd_pascal_webcam.py #笔者这步忽略
贴几张youtube的SSD实时检测效果,视频地址: https://www.youtube.com/watch?v=6q-DBCPROA8

R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第5张图片


R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第6张图片


R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第7张图片


R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第8张图片


直接用ssd_detect.ipynb(examples/ssd_detect.ipynb)测试

R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第9张图片


9.训练其他数据集忽略

mxnet 版本的ssd
代码地址: https://github.com/zhreshold/mxnet-ssd

1.下载代码
git clone --recursive  https://github.com/zhreshold/mxnet-ssd.git

2.编译mxnet
cd mxnet-ssd/mxnet
cp make/config.mk ./config.mk #自行修改配置文件
make -j8

3.下载预训练模型
地址: https://dl.dropboxusercontent. ... 2.zip 。下载后解压到model下

4.测试demo
python demo.py --epoch 0 --images ./data/demo/dog.jpg --thresh 0.5

效果图:





5.其他的训练数据忽略

YOLO2
paper: https://arxiv.org/abs/1506.02640
v2 paper: https://arxiv.org/pdf/1612.08242v1.pdf
官网: http://pjreddie.com/darknet/yolo/

1.下载代码
git clone  https://github.com/pjreddie/darknet
cd darknet
make

2.下载模型
wget  http://pjreddie.com/media/files/yolo.weights

3.检测
./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg
效果图





其他效果图





4.所有检测
./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg -thresh 0

R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第10张图片


5.在视频上检测
./darknet detector demo cfg/coco.data cfg/yolo.cfg yolo.weights

R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第11张图片


R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第12张图片


R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第13张图片


R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记_第14张图片


faster-rcnn
paper: https://arxiv.org/abs/1506.01497
官方版本: https://github.com/ShaoqingRen/faster_rcnn  #matlab
这里使用python版本: https://github.com/rbgirshick/py-faster-rcnn

1.下载代码
git clone --recursive  https://github.com/rbgirshick/py-faster-rcnn.git
笔者这里换了官方的源,没问题的同学可忽略
cd caffe-fast-rcnn

git remote add caffe  https://github.com/BVLC/caffe.gitX 86Xgit fetch caffe

git merge caffe/master 

2.编译Cython模块
cd $FRCN_ROOT/lib
make

3.编译caffe和pycaffe

这里Makefile.config要支持Python layers!

In your Makefile.config, make sure to have this line uncommented

WITH_PYTHON_LAYER := 1

cd $FRCN_ROOT/caffe-fast-rcnn
make -j8 && make pycaffe

4.下载预训练模型
cd $FRCN_ROOT
./data/scripts/fetch_faster_rcnn_models.sh

5.测试demo
cd $FRCN_ROOT
./tools/demo.py

效果图:











6.其他数据集训练的此处忽略

labelImg
笔者使用的图像标注工具是labelImg,制作的格式和PASCAL VOC一样,可在windows、linux和Mac使用。
代码地址: https://github.com/tzutalin/labelImg

1.环境依赖
至少python2.6和PyQt 4.8

2.Linux/Ubuntu/Mac 安装
sudo apt-get install pyqt4-dev-tools
sudo pip install lxml
make all
./labelImg.py

Windows
在文件目录下执行
pyrcc4 -o resources.py resources.qrc
python labelImg.py

3.常规使用步骤
python labelImg.py
在File菜单选Change default saved annotation folder
点击Open Dir,打开图片路径
点击Create RectBox,画标注

4.常用快捷键
Ctrl + r 选择annotation的默认存放路径
Ctrl + n 新建一个标注
Ctrl + s 保存图片
n:下张图片
p:上一张图片

5.预先可以在 labelImg/data/predefined_classes.txt 定义标注类别

转载自七月在线社区:https://ask.julyedu.com/question/7490

你可能感兴趣的:(七月在线社区,目标检测试验,R-FCN,YOLOV2等,目标检测实验笔记资料)