package wikipedia
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
import org.apache.log4j.{Level,Logger}
case class WikipediaArticle(title: String, text: String) {
/**
* @return Whether the text of this article mentions `lang` or not
* @param lang Language to look for (e.g. "Scala")
*/
def mentionsLanguage(lang: String): Boolean = text.split(' ').contains(lang)
}
object WikipediaRanking {
// 设置日志
Logger.getLogger("org").setLevel(Level.ERROR)
val langs = List(
"JavaScript", "Java", "PHP", "Python", "C#", "C++", "Ruby", "CSS",
"Objective-C", "Perl", "Scala", "Haskell", "MATLAB", "Clojure", "Groovy")
val conf: SparkConf = new SparkConf()
val sc: SparkContext = new SparkContext("local[*]", "Wikipedia")
// Hint: use a combination of `sc.textFile`, `WikipediaData.filePath` and `WikipediaData.parse`
val wikiRdd: RDD[WikipediaArticle] = sc.textFile(WikipediaData.filePath).map(WikipediaData.parse)
/** Returns the number of articles on which the language `lang` occurs. 返回lang语言出现的文章篇数
* Hint1: consider using method `aggregate` on RDD[T].
* Hint2: consider using method `mentionsLanguage` on `WikipediaArticle`
*/
def occurrencesOfLang(lang: String, rdd: RDD[WikipediaArticle]): Int =
rdd.filter(_.mentionsLanguage(lang)).count().toInt
/* (1) Use `occurrencesOfLang` to compute the ranking of the languages
* (`val langs`) by determining the number of Wikipedia articles that
* mention each language at least once. Don't forget to sort the
* languages by their occurrence, in decreasing order!
*
* Note: this operation is long-running. It can potentially run for
* several seconds.
*/
def rankLangs(langs: List[String], rdd: RDD[WikipediaArticle]): List[(String, Int)] = {
rdd.cache() // 允许数据存储在内存
langs.map(lang => (lang, occurrencesOfLang(lang, rdd))).sortBy(_._2).reverse
/*
对于langs的每一个元素找到包含它的文章篇数。
其中sortBy(_._2)指根据occurrencesOfLang(lang, rdd))来排序,
如果是sortBy(_._1)则根据lang来排序
默认从小到大排序,所以加上.reverse
*/
}
/* Compute an inverted index of the set of articles, mapping each language
* to the Wikipedia pages in which it occurs.
*/
def makeIndex(langs: List[String], rdd: RDD[WikipediaArticle]): RDD[(String, Iterable[WikipediaArticle])] = {
val articles_Languages = rdd.flatMap(article => {
langs.filter(lang => article.mentionsLanguage(lang))
.map(lang => (lang, article))
})
articles_Languages.groupByKey
}
/* (2) Compute the language ranking again, but now using the inverted index. Can you notice
* a performance improvement?
*
* Note: this operation is long-running. It can potentially run for
* several seconds.
*/
def rankLangsUsingIndex(index: RDD[(String, Iterable[WikipediaArticle])]): List[(String, Int)] =
index.mapValues(_.size).sortBy(-_._2).collect().toList
/* (3) Use `reduceByKey` so that the computation of the index and the ranking are combined.
* Can you notice an improvement in performance compared to measuring *both* the computation of the index
* and the computation of the ranking? If so, can you think of a reason?
*
* Note: this operation is long-running. It can potentially run for
* several seconds.
*/
def rankLangsReduceByKey(langs: List[String], rdd: RDD[WikipediaArticle]): List[(String, Int)] = {
rdd.flatMap(article => {
langs.filter(article.mentionsLanguage) // 相当于langs.filter(lang => article.mentionsLanguage(lang)) 或者 langs.filter(article.mentionsLanguage(_))
.map((_, 1))
}).reduceByKey(_ + _)
.sortBy(_._2)
.collect()
.toList
.reverse
}
def main(args: Array[String]) {
/* Languages ranked according to (1) */
val langsRanked: List[(String, Int)] = timed("Part 1: naive ranking", rankLangs(langs, wikiRdd))
/* An inverted index mapping languages to wikipedia pages on which they appear */
def index: RDD[(String, Iterable[WikipediaArticle])] = makeIndex(langs, wikiRdd)
/* Languages ranked according to (2), using the inverted index */
val langsRanked2: List[(String, Int)] = timed("Part 2: ranking using inverted index", rankLangsUsingIndex(index))
/* Languages ranked according to (3) */
val langsRanked3: List[(String, Int)] = timed("Part 3: ranking using reduceByKey", rankLangsReduceByKey(langs, wikiRdd))
/* Output the speed of each ranking */
println(timing)
sc.stop()
}
val timing = new StringBuffer
def timed[T](label: String, code: => T): T = {
val start = System.currentTimeMillis()
val result = code
val stop = System.currentTimeMillis()
timing.append(s"Processing $label took ${stop - start} ms.\n")
result
}
}