Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据。而mapreduce开发人员可以把己写的mapper 和reducer 作为插件来支持Hive 做更复杂的数据分析。
它与关系型数据库的SQL 略有不同,但支持了绝大多数的语句如DDL、DML 以及常见的聚合函数、连接查询、条件查询。HIVE不适合用于联机,也不提供实时查询功能。它最适合应用在基于大量不可变数据的批处理作业。
HIVE的特点:可伸缩(在Hadoop的集群上动态的添加设备),可扩展,容错,输入格式的松散耦合。
基本的Select 操作:
1. SELECT [ALL | DISTINCT] select_expr, select_expr, ...
2. FROM table_reference
3. [WHERE where_condition]
4. [GROUP BY col_list [HAVING condition]]
5. [ CLUSTER BY col_list
6. | [DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list]
7. ]
8. [LIMIT number]
使用ALL和DISTINCT选项区分对重复记录的处理。默认是ALL,表示查询所有记录。DISTINCT表示去掉重复的记录。
注:SELECT 语句可以使用正则表达式做列选择
从SQL到HiveQL应转变的习惯
1、Hive不支持等值连接
SQL中对两表内联可以写成:
select * from dual a,dual b where a.key = b.key;
Hive中应为
select * from dual a join dual b on a.key = b.key;
而不是传统的格式:
SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2
WHERE t1.a2 = t2.b2
2、分号字符
分号是SQL语句结束标记,在HiveQL中也是,但是在HiveQL中,对分号的识别没有那么智慧,例如:
select concat(key,concat(';',key)) from dual;
但HiveQL在解析语句时提示:
FAILED: Parse Error: line 0:-1 mismatched input '
解决的办法是,使用分号的八进制的ASCII码进行转义,那么上述语句应写成:
select concat(key,concat('\073',key)) from dual;
3、IS [NOT] NULL
SQL中null代表空值, 值得警惕的是, 在HiveQL中String类型的字段若是空(empty)字符串, 即长度为0, 那么对它进行IS NULL的判断结果是False.
4、Hive不支持将数据插入现有的表或分区中,仅支持覆盖重写整个表,示例如下:
INSERT OVERWRITE TABLE t1
SELECT * FROM t2;
5、Hive 的嵌套查询再必须给表起别名
如:select a.column
from (select *
from 表1
where dt = 20180528
) a
group by a.dt limit 100
6、当有两个分区时,在使用where语句查询的时候,必须将两个分区都写出来,如:
若表的分区有两个dt日期和hr小时,我们想选择20180608这一个分区的数据,则选择条件为where dt = 20180608 and hr>=0