1.查询
query,要查询的条件全部放到query参数里面
{ “query”:{ … } }
1.1. 查询所有
“match_all”:{ }
使用elasticsearchTemplate的java代码
term是代表完全匹配,也就是精确查询,搜索前不会再对搜索词进行分词,所以我们的搜索词必须是文档分词集合中的一个 TermsBuilder:构造聚合函数 AggregationBuilders:创建聚合函数工具类 BoolQueryBuilder:拼装连接(查询)条件 QueryBuilders:简单的静态工厂”导入静态”使用。主要作用是查询条件(关系),如区间\精确\多值等条件 NativeSearchQueryBuilder:将连接条件和聚合函数等组合 SearchQuery:生成查询 elasticsearchTemplate.query:进行查询 Aggregations:Represents a set of computed addAggregation.代表一组添加聚合函数统计后的数据 Bucket:满足某个条件(聚合)的文档集合
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery(matchAllQuery()).build(); return elasticsearchTemplate.queryForList(searchQuery, Product.class);
1.2. 匹配对应字段
“mathc”:{ “FIELD”: “TEXT” //字段:值 }
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery(matchQuery(“name”,“gaolujie”)).build(); return elasticsearchTemplate.queryForList(searchQuery, Product.class);
2.分页
和query同级
{ “query”: { “match_all”: {} }, “from”:1, //从第几条开始 (从0开始) “size”:1 //大小 }
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery(matchQuery(“name”,“gaolujie”)) .withPageable(new PageRequest(1,1)).build(); //分页 return elasticsearchTemplate.queryForList(searchQuery, Product.class);
3.排序
和query同级
{ “sort”: [ { “FIELD”: { “order”: “desc” } } ] }
SortBuilder sortBuilder = SortBuilders.fieldSort(“price”) //排序字段 .order(SortOrder.DESC); //排序方式 SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery(matchQuery(“name”, “gaolujie”)) .withSort(sortBuilder) .build(); return elasticsearchTemplate.queryForList(searchQuery, Product.class);
4.指定查询的字段
{ “_source”: [“name”,“price”] //结果只显示name和price }
String[] include = {“name”, “price”}; FetchSourceFilter fetchSourceFilter = new FetchSourceFilter(include, null); //两个参数分别是要显示的和不显示的 SearchQuery searchQuery = new NativeSearchQueryBuilder() .withSourceFilter(fetchSourceFilter) .build(); return elasticsearchTemplate.queryForList(searchQuery, Product.class);
3.query filter
{ “bool”:{ } }
query的子句
Bool查询现在包括四种子句:must,filter,should,must_not
filter比query快
query的时候,会先比较查询条件,然后计算分值,最后返回文档结果; 而filter则是先判断是否满足查询条件,如果不满足,会缓存查询过程(记录该文档不满足结果); 满足的话,就直接缓存结果 综上所述,filter快在两个方面: 1.对结果进行缓存 2.避免计算分值
must
bool的子句
{ “query”: { “bool”: { “must”: { “match”:{ “price”:31 //只支持单字段 } } } } }
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withFilter( boolQuery() .must(matchQuery(“price”,80)) //结构类似.bool -> must ->match ) .build(); return elasticsearchTemplate.queryForList(searchQuery, Product.class);
filter
过滤
{ “query”: { “bool”: { “must”: { “match”:{ “name”:“yagao” } }, “filter” : { “range” : { “price” : { “gt” : 6 } //价格大于6的 } } } } }
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withFilter( boolQuery() .must( matchQuery(“name”, “heiren”) ) .filter( rangeQuery(“price”) .gt(6) ) ) .build(); return elasticsearchTemplate.queryForList(searchQuery, Product.class);
4.full-text search(全文检索) 5.phrase search(短语搜索)
{ “query” : { “match_phrase”: { “FIELD”: “PHRASE” } } }
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery( matchPhraseQuery(“name”,“heiren”) ) .build(); return elasticsearchTemplate.queryForList(searchQuery, Product.class);
6.highlight search(高亮搜索结果)
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery( matchPhraseQuery(“name”, “heiren”) ) .withHighlightFields(new HighlightBuilder.Field(“name”)) .build();
highlight 与 query同级
{ “query” : { “match” : { “producer” : “producer” } }, “highlight”: { //高亮显示 “fields” : { //字段 “producer” : {} } } }
返回结果:
… { “_index”: “ecommerce”, “_type”: “product”, “_id”: “2”, “_score”: 0.25811607, “_source”: { “name”: “jiajieshi yagao”, “desc”: “youxiao fangzhu”, “price”: 25, “producer”: “jiajieshi producer”, “tags”: [ “fangzhu” ] }, “highlight”: { //高亮 “producer”: [ “jiajieshi producer” ] } }, …
聚合分析
5.x后对排序,聚合这些操作用单独的数据结构(fielddata)缓存到内存里了,需要单独开启
下层agg是起的名字的子句
PUT my_index/_mapping/_doc { “properties”: { “my_field”: { “type”: “text”, “fielddata”: true } } }
这里我们需要
PUT /ecommerce/_mapping/product { “properties”: { “tags”: { “type”: “text”, “fielddata”: true } } }
需求1.: 对名称中包含yagao的商品,计算每个tag下的商品数量
使用aggs,与query同级
GET /ecommerce/product/_search { “size”: 0, “query”: { “match”: { “name”: “yagao” } }, “aggs”: { //聚合操作 “all_tags”: { //聚合名称,自己起名字 “terms”: { “field”: “tags” //聚合的字段 } } } }
返回结果
“aggregations”: { //聚合结果 “all_tags”: { //查询时候起的名字 “doc_count_error_upper_bound”: 0, “sum_other_doc_count”: 0, “buckets”: [ //结果存放的地方 { “key”: “fangzhu”, //tag “doc_count”: 2 //次数 }, { “key”: “meibai”, “doc_count”: 1 } ] } }
Map
需求2:先分组,再算每组的平均值,计算每个tag下的商品的平均价格
GET /ecommerce/product/_search { “size”: 0, “aggs”: { //先聚合 “group_by_tags”: { “terms”: { “field”: “tags” }, “aggs”: { //再聚合 “avg_price”: { “avg”: { //平均值函数 “field”: “price” } } } } } }
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery( matchQuery(“name”, “heiren”) ) .addAggregation( AggregationBuilders .terms(“group_by_tags”) .field(“tags”) .subAggregation( AggregationBuilders .avg(“price”) .field(“price” ) ) .build(); return elasticsearchTemplate.query(searchQuery, response -> { //直接返回es原封结果到前端 return JSONObject.parseObject(response.toString()); });
需求3:计算每个tag下的商品的平均价格,并且按照平均价格降序排序
注意,排序在外层聚合函数中
GET /ecommerce/product/_search { “size”: 0, “aggs”: { “group_by_tags”: { “terms”: { “field”: “tags”, “order”: { //排序order “avg_price”: “desc” //对应下面的字段 } }, “aggs”: { “avg_price”: { “avg”: { “field”: “price” } } } } } }
SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery( matchQuery(“name”, “heiren”) ) .addAggregation( AggregationBuilders .terms(“group_by_tags”) .field(“tags”) .order( Terms.Order.aggregation(“price”, false) ) .subAggregation AggregationBuilders .avg(“price”) .field(“price”) ) ) .build(); return elasticsearchTemplate.query(searchQuery, response -> { //直接返回es原封结果到前端 return JSONObject.parseObject(response.toString()); });
需求4:按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格
GET /ecommerce/product/_search { “size”: 0, “aggs”: { “group_by_price”: { //先对价格进行分组 “range”: { //区间函数 “field”: “price”, “ranges”: [ { “from”: 0, “to”: 20 }, { “from”: 20, “to”: 40 }, { “from”: 40, “to”: 50 } ] }, “aggs”: { //染回对tag进行分组 “group_by_tags”: { “terms”: { “field”: “tags” }, “aggs”: { “average_price”: { //再求平均值 “avg”: { “field”: “price” } } } } } } } }
//先分区,再分组,在求平均值 SearchQuery searchQuery = new NativeSearchQueryBuilder() .withQuery( matchQuery(“name”, “heiren”) ) .addAggregation( AggregationBuilders .range(“range_by_price”) .field(“price”) //写代码的时候遇到的问题 .addRange(0, 20) .addRange(20, 40) .addRange(40, 100) .subAggregation( AggregationBuilders .terms(“group_by_tags”) .field(“tags”) .order( Terms.Order.aggregation(“price”, false) ) .subAggregation( AggregationBuilders .avg(“price”) .field(“price”) ) ) ) .build(); return elasticsearchTemplate.query(searchQuery, response -> { //直接返回es原封结果到前端 return JSONObject.parseObject(response.toString()); });