【字符串】Trie

Trie,又名字典树。

Trie性能优越在于它将字符串公共前缀进行了合并,比如abcd和abd,节省了存储有一个ab的时间,同时树形的数据结构又给它带来查找上很优越的性能(优于线性表,不弱于hash),但有一个缺点是,如果字符串没有什么公共前缀,内存开销将会比较大。

【字符串】Trie_第1张图片

相信大家看过图之后大致应当已经了解Trie是个什么东西。
那么它有什么用呢?
①串的快速检索:对字典建树,沿边向下查找,时间复杂度O(len(s))。
②串排序:建树时,很明显这棵树的每个结点的所有儿子都按照其字母大小排序。要进行排序只需进行先序遍历
③最长公共前缀:很明显最长公共前缀就是树根到他们最近公共祖先的树链,也就是到两个字符串分叉的节点。
④作为某些其他算法存储字符串的数据结构,如:AC自动机。

Trie的性质:
①根节点不包含字符,除根节点外每一个节点都只包含一个字符
②从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串,也就是说只有表示字符串结尾的节点才有值。
③每个节点的所有子节点包含的字符都不相同。
大概YY一下都很好理解,有图有真相嘛……

代码实现比较简单。

struct Trie
{
    int ch[maxnode][sigma_size];//这里采用儿子表示法,即列出所有儿子,效率较高,如对空间要求较高,可用儿子兄弟表示法。
    int val[maxnode];
    int sz;//节点总数
    Trie() { sz=1; memset(ch[0],0,sizeof(ch[0])); }
    int idx(char c) { return c-'a'; }


//插入字符串s,一路找下去,没有节点就新建,注意保证v非零。
    void insert(char *s, int v)
    {
        int u=0,n=strlen(s);
        for (int i=0; iint c=idx(s[i]);
            if (!ch[u][c])//节点不存在
            {
                memset(ch[sz],0,sizeof(ch[sz]));//新建节点
                val[sz]=0;
                ch[u][c]=sz++;
            }
            u=ch[u][c];//往下走
        }
        val[u]=v;//标记该字符串
    }

//查找字符串,同样是一路找下去,找不到了就返回。
    int find(char *s)
    {
        int u=0,n=strlen(s);
        for (int i=0; iint c=idx(s[i]);
            if (!ch[u][c]) return 0;//不存在 
            u=ch[u][c];//往下走
        }
        return val[u];//找到了 
    }
};

你可能感兴趣的:(数据结构,字符串,Trie,字符串)