并发编程 ThreadLocal

结论先写出来:

ThreadLocal  主要是用于和Thread 线程级别  进行参数绑定的类,依据Thread线程类中threadLocals的属性进行存储值。

而该属性的类型是ThreadLocal类中静态类ThreadLocalMap。而绑定的过程是  依据当前线程  去查找对应的threadLocals,也就是ThreadLocalMap类型的值,而该map是以this(也就是实例化的线程的threadLocal对象 )。这样也就达到了线程与threadlocal对象对应,而存储的key就是此threadlocal实例对象,值就是value。取值的过程也是根据当前线程去查找threadLocals或者叫ThreadLocalMap的map。map的key也是此threadlocal实例对象。

线程局部变量是局限于线程内部的变量,属于线程自身所有,不在多个线程间共享。Java 提供 ThreadLocal 类来支持线程局部变量,是一种实现线程安全的方式。但是在管理环境下(如 web 服务器)使用线程局部变量的时候要特别小心,在这种情况下,工作线程的生命周期比任何应用变量的生命周期都要长。任何线程局部变量一旦在工作完成后没有释放,Java 应用就存在内存泄露的风险。

每个线程独自拥有一个变量,单个线程内共享,多个线程不共享。
ThreadLocal适用多线程间资源共享,但不共享变化。

 

Thread类中有个    ThreadLocal.ThreadLocalMap threadLocals = null;  属性变量

并发编程 ThreadLocal_第1张图片

ThreadLocal中有ThreadLocalMap静态内部类。

ThreadLocal的set(T value);

 public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

解析:

先获取当前线程,然后根据当前线程去查询Thread线程类中ThreadLocalMap属性变量map。若此map不为空,则存已当前对象(this)即已实例化的ThreadLocal对象为键,T类型的value的值。若此map为空(证明此线程还没初始化ThreadLocalMap   threadLocals ),则创建一个ThreadLocalMap,也就是把当前线程的threadLocals属性赋值。

首先看下getMap(t) 方法:

    /**
     * Get the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param  t the current thread
     * @return the map
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

 根据注释可知,获得一个与当前线程t绑定的ThreadLocalMap实例对象,即此线程t的属性threadLocals的值(类型是ThreadLocalMap)。

再看下createMap(t, value)方法:

  /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

根据当前线程t,创建一个 ThreadLocalMap实例对象,即线程t的一个属性threadLocals,而以当前ThreadLocal对象为键,以value为值新建个ThreadLocalMap对象,并付给threadLocals。

 /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

创建的ThreadLocalMap 中的第一个参数  即为上一个代码的this,也就是此ThreadLocal实例化对象。 

上文就是基本的set方法全部。

下面看下get方法:

/**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

 其他代码都应该看得懂,主要看下setInitialValue();

作用就是首次返回null,同时给Thread的threadLocals属性赋予ThreadLocalMap 的值。

/**
     * Variant of set() to establish initialValue. Used instead
     * of set() in case user has overridden the set() method.
     *
     * @return the initial value
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }
/**
     * Returns the current thread's "initial value" for this
     * thread-local variable.  This method will be invoked the first
     * time a thread accesses the variable with the {@link #get}
     * method, unless the thread previously invoked the {@link #set}
     * method, in which case the {@code initialValue} method will not
     * be invoked for the thread.  Normally, this method is invoked at
     * most once per thread, but it may be invoked again in case of
     * subsequent invocations of {@link #remove} followed by {@link #get}.
     *
     * 

This implementation simply returns {@code null}; if the * programmer desires thread-local variables to have an initial * value other than {@code null}, {@code ThreadLocal} must be * subclassed, and this method overridden. Typically, an * anonymous inner class will be used. * * @return the initial value for this thread-local */ protected T initialValue() { return null; }

 

 

ThreadLocal 类源码如下:
/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

package java.lang;
import java.lang.ref.*;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;

/**
 * This class provides thread-local variables.  These variables differ from
 * their normal counterparts in that each thread that accesses one (via its
 * {@code get} or {@code set} method) has its own, independently initialized
 * copy of the variable.  {@code ThreadLocal} instances are typically private
 * static fields in classes that wish to associate state with a thread (e.g.,
 * a user ID or Transaction ID).
 *
 * 

For example, the class below generates unique identifiers local to each * thread. * A thread's id is assigned the first time it invokes {@code ThreadId.get()} * and remains unchanged on subsequent calls. *

 * import java.util.concurrent.atomic.AtomicInteger;
 *
 * public class ThreadId {
 *     // Atomic integer containing the next thread ID to be assigned
 *     private static final AtomicInteger nextId = new AtomicInteger(0);
 *
 *     // Thread local variable containing each thread's ID
 *     private static final ThreadLocal<Integer> threadId =
 *         new ThreadLocal<Integer>() {
 *             @Override protected Integer initialValue() {
 *                 return nextId.getAndIncrement();
 *         }
 *     };
 *
 *     // Returns the current thread's unique ID, assigning it if necessary
 *     public static int get() {
 *         return threadId.get();
 *     }
 * }
 * 
*

Each thread holds an implicit reference to its copy of a thread-local * variable as long as the thread is alive and the {@code ThreadLocal} * instance is accessible; after a thread goes away, all of its copies of * thread-local instances are subject to garbage collection (unless other * references to these copies exist). * * @author Josh Bloch and Doug Lea * @since 1.2 */ public class ThreadLocal { /** * ThreadLocals rely on per-thread linear-probe hash maps attached * to each thread (Thread.threadLocals and * inheritableThreadLocals). The ThreadLocal objects act as keys, * searched via threadLocalHashCode. This is a custom hash code * (useful only within ThreadLocalMaps) that eliminates collisions * in the common case where consecutively constructed ThreadLocals * are used by the same threads, while remaining well-behaved in * less common cases. */ private final int threadLocalHashCode = nextHashCode(); /** * The next hash code to be given out. Updated atomically. Starts at * zero. */ private static AtomicInteger nextHashCode = new AtomicInteger(); /** * The difference between successively generated hash codes - turns * implicit sequential thread-local IDs into near-optimally spread * multiplicative hash values for power-of-two-sized tables. */ private static final int HASH_INCREMENT = 0x61c88647; /** * Returns the next hash code. */ private static int nextHashCode() { return nextHashCode.getAndAdd(HASH_INCREMENT); } /** * Returns the current thread's "initial value" for this * thread-local variable. This method will be invoked the first * time a thread accesses the variable with the {@link #get} * method, unless the thread previously invoked the {@link #set} * method, in which case the {@code initialValue} method will not * be invoked for the thread. Normally, this method is invoked at * most once per thread, but it may be invoked again in case of * subsequent invocations of {@link #remove} followed by {@link #get}. * *

This implementation simply returns {@code null}; if the * programmer desires thread-local variables to have an initial * value other than {@code null}, {@code ThreadLocal} must be * subclassed, and this method overridden. Typically, an * anonymous inner class will be used. * * @return the initial value for this thread-local */ protected T initialValue() { return null; } /** * Creates a thread local variable. The initial value of the variable is * determined by invoking the {@code get} method on the {@code Supplier}. * * @param the type of the thread local's value * @param supplier the supplier to be used to determine the initial value * @return a new thread local variable * @throws NullPointerException if the specified supplier is null * @since 1.8 */ public static ThreadLocal withInitial(Supplier supplier) { return new SuppliedThreadLocal<>(supplier); } /** * Creates a thread local variable. * @see #withInitial(java.util.function.Supplier) */ public ThreadLocal() { } /** * Returns the value in the current thread's copy of this * thread-local variable. If the variable has no value for the * current thread, it is first initialized to the value returned * by an invocation of the {@link #initialValue} method. * * @return the current thread's value of this thread-local */ public T get() { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue(); } /** * Variant of set() to establish initialValue. Used instead * of set() in case user has overridden the set() method. * * @return the initial value */ private T setInitialValue() { T value = initialValue(); Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); return value; } /** * Sets the current thread's copy of this thread-local variable * to the specified value. Most subclasses will have no need to * override this method, relying solely on the {@link #initialValue} * method to set the values of thread-locals. * * @param value the value to be stored in the current thread's copy of * this thread-local. */ public void set(T value) { Thread t = Thread.currentThread(); ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); } /** * Removes the current thread's value for this thread-local * variable. If this thread-local variable is subsequently * {@linkplain #get read} by the current thread, its value will be * reinitialized by invoking its {@link #initialValue} method, * unless its value is {@linkplain #set set} by the current thread * in the interim. This may result in multiple invocations of the * {@code initialValue} method in the current thread. * * @since 1.5 */ public void remove() { ThreadLocalMap m = getMap(Thread.currentThread()); if (m != null) m.remove(this); } /** * Get the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @return the map */ ThreadLocalMap getMap(Thread t) { return t.threadLocals; } /** * Create the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @param firstValue value for the initial entry of the map */ void createMap(Thread t, T firstValue) { t.threadLocals = new ThreadLocalMap(this, firstValue); } /** * Factory method to create map of inherited thread locals. * Designed to be called only from Thread constructor. * * @param parentMap the map associated with parent thread * @return a map containing the parent's inheritable bindings */ static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) { return new ThreadLocalMap(parentMap); } /** * Method childValue is visibly defined in subclass * InheritableThreadLocal, but is internally defined here for the * sake of providing createInheritedMap factory method without * needing to subclass the map class in InheritableThreadLocal. * This technique is preferable to the alternative of embedding * instanceof tests in methods. */ T childValue(T parentValue) { throw new UnsupportedOperationException(); } /** * An extension of ThreadLocal that obtains its initial value from * the specified {@code Supplier}. */ static final class SuppliedThreadLocal extends ThreadLocal { private final Supplier supplier; SuppliedThreadLocal(Supplier supplier) { this.supplier = Objects.requireNonNull(supplier); } @Override protected T initialValue() { return supplier.get(); } } /** * ThreadLocalMap is a customized hash map suitable only for * maintaining thread local values. No operations are exported * outside of the ThreadLocal class. The class is package private to * allow declaration of fields in class Thread. To help deal with * very large and long-lived usages, the hash table entries use * WeakReferences for keys. However, since reference queues are not * used, stale entries are guaranteed to be removed only when * the table starts running out of space. */ static class ThreadLocalMap { /** * The entries in this hash map extend WeakReference, using * its main ref field as the key (which is always a * ThreadLocal object). Note that null keys (i.e. entry.get() * == null) mean that the key is no longer referenced, so the * entry can be expunged from table. Such entries are referred to * as "stale entries" in the code that follows. */ static class Entry extends WeakReference> { /** The value associated with this ThreadLocal. */ Object value; Entry(ThreadLocal k, Object v) { super(k); value = v; } } /** * The initial capacity -- MUST be a power of two. */ private static final int INITIAL_CAPACITY = 16; /** * The table, resized as necessary. * table.length MUST always be a power of two. */ private Entry[] table; /** * The number of entries in the table. */ private int size = 0; /** * The next size value at which to resize. */ private int threshold; // Default to 0 /** * Set the resize threshold to maintain at worst a 2/3 load factor. */ private void setThreshold(int len) { threshold = len * 2 / 3; } /** * Increment i modulo len. */ private static int nextIndex(int i, int len) { return ((i + 1 < len) ? i + 1 : 0); } /** * Decrement i modulo len. */ private static int prevIndex(int i, int len) { return ((i - 1 >= 0) ? i - 1 : len - 1); } /** * Construct a new map initially containing (firstKey, firstValue). * ThreadLocalMaps are constructed lazily, so we only create * one when we have at least one entry to put in it. */ ThreadLocalMap(ThreadLocal firstKey, Object firstValue) { table = new Entry[INITIAL_CAPACITY]; int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); table[i] = new Entry(firstKey, firstValue); size = 1; setThreshold(INITIAL_CAPACITY); } /** * Construct a new map including all Inheritable ThreadLocals * from given parent map. Called only by createInheritedMap. * * @param parentMap the map associated with parent thread. */ private ThreadLocalMap(ThreadLocalMap parentMap) { Entry[] parentTable = parentMap.table; int len = parentTable.length; setThreshold(len); table = new Entry[len]; for (int j = 0; j < len; j++) { Entry e = parentTable[j]; if (e != null) { @SuppressWarnings("unchecked") ThreadLocal key = (ThreadLocal) e.get(); if (key != null) { Object value = key.childValue(e.value); Entry c = new Entry(key, value); int h = key.threadLocalHashCode & (len - 1); while (table[h] != null) h = nextIndex(h, len); table[h] = c; size++; } } } } /** * Get the entry associated with key. This method * itself handles only the fast path: a direct hit of existing * key. It otherwise relays to getEntryAfterMiss. This is * designed to maximize performance for direct hits, in part * by making this method readily inlinable. * * @param key the thread local object * @return the entry associated with key, or null if no such */ private Entry getEntry(ThreadLocal key) { int i = key.threadLocalHashCode & (table.length - 1); Entry e = table[i]; if (e != null && e.get() == key) return e; else return getEntryAfterMiss(key, i, e); } /** * Version of getEntry method for use when key is not found in * its direct hash slot. * * @param key the thread local object * @param i the table index for key's hash code * @param e the entry at table[i] * @return the entry associated with key, or null if no such */ private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) { Entry[] tab = table; int len = tab.length; while (e != null) { ThreadLocal k = e.get(); if (k == key) return e; if (k == null) expungeStaleEntry(i); else i = nextIndex(i, len); e = tab[i]; } return null; } /** * Set the value associated with key. * * @param key the thread local object * @param value the value to be set */ private void set(ThreadLocal key, Object value) { // We don't use a fast path as with get() because it is at // least as common to use set() to create new entries as // it is to replace existing ones, in which case, a fast // path would fail more often than not. Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { ThreadLocal k = e.get(); if (k == key) { e.value = value; return; } if (k == null) { replaceStaleEntry(key, value, i); return; } } tab[i] = new Entry(key, value); int sz = ++size; if (!cleanSomeSlots(i, sz) && sz >= threshold) rehash(); } /** * Remove the entry for key. */ private void remove(ThreadLocal key) { Entry[] tab = table; int len = tab.length; int i = key.threadLocalHashCode & (len-1); for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i, len)]) { if (e.get() == key) { e.clear(); expungeStaleEntry(i); return; } } } /** * Replace a stale entry encountered during a set operation * with an entry for the specified key. The value passed in * the value parameter is stored in the entry, whether or not * an entry already exists for the specified key. * * As a side effect, this method expunges all stale entries in the * "run" containing the stale entry. (A run is a sequence of entries * between two null slots.) * * @param key the key * @param value the value to be associated with key * @param staleSlot index of the first stale entry encountered while * searching for key. */ private void replaceStaleEntry(ThreadLocal key, Object value, int staleSlot) { Entry[] tab = table; int len = tab.length; Entry e; // Back up to check for prior stale entry in current run. // We clean out whole runs at a time to avoid continual // incremental rehashing due to garbage collector freeing // up refs in bunches (i.e., whenever the collector runs). int slotToExpunge = staleSlot; for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(i, len)) if (e.get() == null) slotToExpunge = i; // Find either the key or trailing null slot of run, whichever // occurs first for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal k = e.get(); // If we find key, then we need to swap it // with the stale entry to maintain hash table order. // The newly stale slot, or any other stale slot // encountered above it, can then be sent to expungeStaleEntry // to remove or rehash all of the other entries in run. if (k == key) { e.value = value; tab[i] = tab[staleSlot]; tab[staleSlot] = e; // Start expunge at preceding stale entry if it exists if (slotToExpunge == staleSlot) slotToExpunge = i; cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); return; } // If we didn't find stale entry on backward scan, the // first stale entry seen while scanning for key is the // first still present in the run. if (k == null && slotToExpunge == staleSlot) slotToExpunge = i; } // If key not found, put new entry in stale slot tab[staleSlot].value = null; tab[staleSlot] = new Entry(key, value); // If there are any other stale entries in run, expunge them if (slotToExpunge != staleSlot) cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); } /** * Expunge a stale entry by rehashing any possibly colliding entries * lying between staleSlot and the next null slot. This also expunges * any other stale entries encountered before the trailing null. See * Knuth, Section 6.4 * * @param staleSlot index of slot known to have null key * @return the index of the next null slot after staleSlot * (all between staleSlot and this slot will have been checked * for expunging). */ private int expungeStaleEntry(int staleSlot) { Entry[] tab = table; int len = tab.length; // expunge entry at staleSlot tab[staleSlot].value = null; tab[staleSlot] = null; size--; // Rehash until we encounter null Entry e; int i; for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(i, len)) { ThreadLocal k = e.get(); if (k == null) { e.value = null; tab[i] = null; size--; } else { int h = k.threadLocalHashCode & (len - 1); if (h != i) { tab[i] = null; // Unlike Knuth 6.4 Algorithm R, we must scan until // null because multiple entries could have been stale. while (tab[h] != null) h = nextIndex(h, len); tab[h] = e; } } } return i; } /** * Heuristically scan some cells looking for stale entries. * This is invoked when either a new element is added, or * another stale one has been expunged. It performs a * logarithmic number of scans, as a balance between no * scanning (fast but retains garbage) and a number of scans * proportional to number of elements, that would find all * garbage but would cause some insertions to take O(n) time. * * @param i a position known NOT to hold a stale entry. The * scan starts at the element after i. * * @param n scan control: {@code log2(n)} cells are scanned, * unless a stale entry is found, in which case * {@code log2(table.length)-1} additional cells are scanned. * When called from insertions, this parameter is the number * of elements, but when from replaceStaleEntry, it is the * table length. (Note: all this could be changed to be either * more or less aggressive by weighting n instead of just * using straight log n. But this version is simple, fast, and * seems to work well.) * * @return true if any stale entries have been removed. */ private boolean cleanSomeSlots(int i, int n) { boolean removed = false; Entry[] tab = table; int len = tab.length; do { i = nextIndex(i, len); Entry e = tab[i]; if (e != null && e.get() == null) { n = len; removed = true; i = expungeStaleEntry(i); } } while ( (n >>>= 1) != 0); return removed; } /** * Re-pack and/or re-size the table. First scan the entire * table removing stale entries. If this doesn't sufficiently * shrink the size of the table, double the table size. */ private void rehash() { expungeStaleEntries(); // Use lower threshold for doubling to avoid hysteresis if (size >= threshold - threshold / 4) resize(); } /** * Double the capacity of the table. */ private void resize() { Entry[] oldTab = table; int oldLen = oldTab.length; int newLen = oldLen * 2; Entry[] newTab = new Entry[newLen]; int count = 0; for (int j = 0; j < oldLen; ++j) { Entry e = oldTab[j]; if (e != null) { ThreadLocal k = e.get(); if (k == null) { e.value = null; // Help the GC } else { int h = k.threadLocalHashCode & (newLen - 1); while (newTab[h] != null) h = nextIndex(h, newLen); newTab[h] = e; count++; } } } setThreshold(newLen); size = count; table = newTab; } /** * Expunge all stale entries in the table. */ private void expungeStaleEntries() { Entry[] tab = table; int len = tab.length; for (int j = 0; j < len; j++) { Entry e = tab[j]; if (e != null && e.get() == null) expungeStaleEntry(j); } } } }

 

你可能感兴趣的:(Java,基础)