下面对文本表示进行一个归纳,也就是对于一篇文本可以如何用数学语言表示呢?
上述方法得到的词向量是固定表征的,无法解决一词多义等问题,如“川普”。为此引入基于语言模型的动态表征方法:elmo、GPT、bert。
各种词向量的特点:
(1)One-hot 表示 :维度灾难、语义鸿沟;
(2)分布式表示 (distributed representation) :
最基础的文本表示模型是词袋模型。将每篇文章看成一袋子词,并忽略每个词出现的顺序。具体地说,就是将整段文本以词为单位切分开,然后每篇文章可以表示成一个长向量,向量中的每一维代表一个单词,而该维对应的权重则反映了这个词在原文章中的重要程度。常用TF-IDF来计算权重。
TF(Term Frequency):词频
IDF(Inverse Document Frequency):逆文档频率
将TF和IDF相乘就会得到TF-IDF的算法:
TF(t)=(该词语在文档出现的次数)/(文档中词语的总数)
IDF(t)= log_e(文档总数/出现该词语的文档总数)
直观的解释是,如果一个单词在非常多的文章里面都出现,那么它可能是一个比较通用的词汇,对于区分某篇文章特殊语义的贡献较小,因此对权重做一定惩罚。
将文章进行单词级别的划分有时候并不是一种好的做法,比如英文中的natural language processing(自然语言处理)一词,如果将natural,language,processing这3个词拆分开来,所表达的含义与三个词连续出现时大相径庭。
通常,可以将连续出现的n个词(n≤N)组成的词组(Ngram)也作为一个单独的特征放到向量表示中去,构成N-gram模型。另外,同一个词可能有多种词性变化,却具有相似的含义。在实际应用中,一般会对单词进行词干抽取(Word Stemming)处理,即将不同词性的单词统一成为同一词干的形式。
1)其本质都可以看作是语言模型;
2)词向量只不过NNLM一个产物,word2vec虽然其本质也是语言模型,但是其专注于词向量本身,因此做了许多优化来提高计算效率:
不经过优化的CBOW和Skip-gram中 ,在每个样本中每个词的训练过程都要遍历整个词汇表,也就是都需要经过softmax归一化,计算误差向量和梯度以更新两个词向量矩阵(这两个词向量矩阵实际上就是最终的词向量,可认为初始化不一样),当语料库规模变大、词汇表增长时,训练变得不切实际。为了解决这个问题,word2vec支持两种优化方法:hierarchical softmax 和negative sampling。此部分仅做关键介绍,数学推导请仔细阅读《word2vec 中的数学原理详解》。
hierarchical softmax 使用一颗二叉树表示词汇表中的单词,每个单词都作为二叉树的叶子节点。对于一个大小为V的词汇表,其对应的二叉树包含V-1非叶子节点。假如每个非叶子节点向左转标记为1,向右转标记为0,那么每个单词都具有唯一的从根节点到达该叶子节点的由{0 1}组成的代号(实际上为哈夫曼编码,为哈夫曼树,是带权路径长度最短的树,哈夫曼树保证了词频高的单词的路径短,词频相对低的单词的路径长,这种编码方式很大程度减少了计算量)。
CBOW中的目标函数是使条件概率 最大化
Skip-gram中的目标函数是使条件概率 最大化
negative sampling是一种不同于hierarchical softmax的优化策略,相比于hierarchical softmax,negative sampling的想法更直接——为每个训练实例都提供负例。负采样算法实际上就是一个带权采样过程,负例的选择机制是和单词词频联系起来的。
负采样这个点引入word2vec非常巧妙,两个作用,1.加速了模型计算,2.保证了模型训练的效果,一个是模型每次只需要更新采样的词的权重,不用更新所有的权重,那样会很慢,第二,中心词其实只跟它周围的词有关系,位置离着很远的词没有关系,也没必要同时训练更新,作者这点非常聪明。
(1)特征提取器:elmo采用LSTM进行提取,GPT和bert则采用Transformer进行提取。很多任务表明Transformer特征提取能力强于LSTM,elmo采用1层静态向量+2层LSTM,多层提取能力有限,而GPT和bert中的Transformer可采用多层,并行计算能力强。
(2)单/双向语言模型:
Reference
nlp中的词向量对比:https://zhuanlan.zhihu.com/p/56382372