readelf命令和ELF文件详解

ELF(Executable and Linking Format)是一个定义了目标文件内部信息如何组成和组织的文件格式。内核会根据这些信息加载可执行文件,内核根据这些信息可以知道从文件哪里获取代码,从哪里获取初始化数据,在哪里应该加载共享库,等信息。
ELF文件有下面三种类型:
1.目标文件

$ gcc -c test.c
得到的test.o就是目标文件,目标文件通过链接可生成可执行文件。
静态库其实也算目标文件,静态库是通过ar命令将目标打包为.a文件。
如:ar crv libtest.a test.o

2.可执行文件
$gcc -o test test.c
得到的test文件就是可执行的二进制文件。

3.共享库
$ gcc test.c -fPIC -shared -o libtest.so
得到的文件listtest.so就是共享库。

可以通过readelf来区分上面三种类型的ELF文件,每种类型文件的头部信息是不一样的。
$readelf -h test.o
目标文件

ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              REL (Relocatable file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x0
  Start of program headers:          0 (bytes into file)
  Start of section headers:          456 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           0 (bytes)
  Number of program headers:         0
  Size of section headers:           64 (bytes)
  Number of section headers:         13
  Section header string table index: 10

$readelf -h test
可执行文件

ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x400420
  Start of program headers:          64 (bytes into file)
  Start of section headers:          2696 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           56 (bytes)
  Number of program headers:         8
  Size of section headers:           64 (bytes)
  Number of section headers:         30
  Section header string table index: 27

$readelf -h libtest.so
共享库

ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              DYN (Shared object file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x570
  Start of program headers:          64 (bytes into file)
  Start of section headers:          2768 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           56 (bytes)
  Number of program headers:         6
  Size of section headers:           64 (bytes)
  Number of section headers:         29
  Section header string table index: 26

下面是test.c文件内容:

#include

int global_data = 4;
int global_data_2;
int main(int argc, char **argv)
{ 
    int local_data = 3; 

    printf("Hello World\n"); 
    printf("global_data = %d\n", global_data); 
    printf("global_data_2 = %d\n", global_data_2); 
    printf("local_data = %d\n", local_data); 

    return (0);
}

$gcc -o test test.c
生成可执行文件test,然后使用readelf对其进行分析。

$readelf -h test
下面是输出结果:

ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x400420
  Start of program headers:          64 (bytes into file)
  Start of section headers:          2696 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           56 (bytes)
  Number of program headers:         8
  Size of section headers:           64 (bytes)
  Number of section headers:         30
  Section header string table index: 27

上面的信息可以告诉我们什么信息?
1.根据Class、Type和Machine,可以知道该文件在X86-64位机器上生成的64位可执行文件。
2.根据Entry point address,可以知道当该程序启动时从虚拟地址0x400420处开始运行。这个地址并不是main函数的地址,而是_start函数的地址,_start由链接器创建,_start是为了初始化程序。通过这个命令可以看到_start函数,objdump -d -j .text test
3.根据Number of program headers,可以知道该程序有8个段。
4.根据Number of section headers,可以知道该程序有30个区。
区中存储的信息是用来链接使用的,主要包括:程序代码、程序数据(变量)、重定向信息等。比如:Code section保存的是代码,data section保存的是初始化或未初始化的数据,等等。

Linux内核无法以区的概念来识别可执行文件。内核使用包括连续页的VMA(virtual memory area)来识别进程。在每个VMA中可能映射了一个或多个区。每个VMA代表一个ELF文件的段。
那么,内核如何知道哪个区属于某个VMA(段)?映射关系保存在Program Header Table(PHT)中。

下面查看区的内容:
$readelf -S test

There are 30 section headers, starting at offset 0xa88:

Section Headers:
  [Nr] Name              Type             Address           Offset
       Size              EntSize          Flags  Link  Info  Align
  [ 0]                   NULL             0000000000000000  00000000
       0000000000000000  0000000000000000           0     0     0
  [ 1] .interp           PROGBITS         0000000000400200  00000200
       000000000000001c  0000000000000000   A       0     0     1
  [ 2] .note.ABI-tag     NOTE             000000000040021c  0000021c
       0000000000000020  0000000000000000   A       0     0     4
  [ 3] .note.gnu.build-i NOTE             000000000040023c  0000023c
       0000000000000024  0000000000000000   A       0     0     4
  [ 4] .gnu.hash         GNU_HASH         0000000000400260  00000260
       000000000000001c  0000000000000000   A       5     0     8
  [ 5] .dynsym           DYNSYM           0000000000400280  00000280
       0000000000000078  0000000000000018   A       6     1     8
  [ 6] .dynstr           STRTAB           00000000004002f8  000002f8
       0000000000000044  0000000000000000   A       0     0     1
  [ 7] .gnu.version      VERSYM           000000000040033c  0000033c
       000000000000000a  0000000000000002   A       5     0     2
  [ 8] .gnu.version_r    VERNEED          0000000000400348  00000348
       0000000000000020  0000000000000000   A       6     1     8
  [ 9] .rela.dyn         RELA             0000000000400368  00000368
       0000000000000018  0000000000000018   A       5     0     8
  [10] .rela.plt         RELA             0000000000400380  00000380
       0000000000000048  0000000000000018   A       5    12     8
  [11] .init             PROGBITS         00000000004003c8  000003c8
       0000000000000018  0000000000000000  AX       0     0     4
  [12] .plt              PROGBITS         00000000004003e0  000003e0
       0000000000000040  0000000000000010  AX       0     0     4
  [13] .text             PROGBITS         0000000000400420  00000420
       0000000000000238  0000000000000000  AX       0     0     16
  [14] .fini             PROGBITS         0000000000400658  00000658
       000000000000000e  0000000000000000  AX       0     0     4
  [15] .rodata           PROGBITS         0000000000400668  00000668
       0000000000000053  0000000000000000   A       0     0     8
  [16] .eh_frame_hdr     PROGBITS         00000000004006bc  000006bc
       0000000000000024  0000000000000000   A       0     0     4
  [17] .eh_frame         PROGBITS         00000000004006e0  000006e0
       000000000000007c  0000000000000000   A       0     0     8
  [18] .ctors            PROGBITS         0000000000600760  00000760
       0000000000000010  0000000000000000  WA       0     0     8
  [19] .dtors            PROGBITS         0000000000600770  00000770
       0000000000000010  0000000000000000  WA       0     0     8
  [20] .jcr              PROGBITS         0000000000600780  00000780
       0000000000000008  0000000000000000  WA       0     0     8
  [21] .dynamic          DYNAMIC          0000000000600788  00000788
       0000000000000190  0000000000000010  WA       6     0     8
  [22] .got              PROGBITS         0000000000600918  00000918
       0000000000000008  0000000000000008  WA       0     0     8
  [23] .got.plt          PROGBITS         0000000000600920  00000920
       0000000000000030  0000000000000008  WA       0     0     8
  [24] .data             PROGBITS         0000000000600950  00000950
       0000000000000008  0000000000000000  WA       0     0     4
  [25] .bss              NOBITS           0000000000600958  00000958
       0000000000000018  0000000000000000  WA       0     0     8
  [26] .comment          PROGBITS         0000000000000000  00000958
       000000000000002c  0000000000000001  MS       0     0     1
  [27] .shstrtab         STRTAB           0000000000000000  00000984
       00000000000000fe  0000000000000000           0     0     1
  [28] .symtab           SYMTAB           0000000000000000  00001208
       0000000000000648  0000000000000018          29    46     8
  [29] .strtab           STRTAB           0000000000000000  00001850
       000000000000021e  0000000000000000           0     0     1
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings)
  I (info), L (link order), G (group), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

.text区存储的是程序的代码(二进制指令),该区的标志为X表示可执行。

下面使用objdump反汇编查看.text的内容:
$objdump -d -j .text test
-d选项告诉objdump反汇编机器码,-j选项告诉objdump只关心.text区。

test:     file format elf64-x86-64


Disassembly of section .text:

0000000000400420 <_start>:
  400420:       31 ed                   xor    %ebp,%ebp
  400422:       49 89 d1                mov    %rdx,%r9
  400425:       5e                      pop    %rsi
  400426:       48 89 e2                mov    %rsp,%rdx
  400429:       48 83 e4 f0             and    $0xfffffffffffffff0,%rsp
  40042d:       50                      push   %rax
  40042e:       54                      push   %rsp
  40042f:       49 c7 c0 80 05 40 00    mov    $0x400580,%r8
  400436:       48 c7 c1 90 05 40 00    mov    $0x400590,%rcx
  40043d:       48 c7 c7 04 05 40 00    mov    $0x400504,%rdi
  400444:       e8 c7 ff ff ff          callq  400410 <__libc_start_main@plt>
  400449:       f4                      hlt    
  40044a:       90                      nop
  40044b:       90                      nop

000000000040044c :
  40044c:       48 83 ec 08             sub    $0x8,%rsp
  400450:       48 8b 05 c1 04 20 00    mov    0x2004c1(%rip),%rax        # 600918 <_DYNAMIC+0x190>
  400457:       48 85 c0                test   %rax,%rax
  40045a:       74 02                   je     40045e 0x12>
  40045c:       ff d0                   callq  *%rax
  40045e:       48 83 c4 08             add    $0x8,%rsp
  400462:       c3                      retq   
  400463:       90                      nop
  400464:       90                      nop
  400465:       90                      nop
  400466:       90                      nop
  400467:       90                      nop
  400468:       90                      nop
  400469:       90                      nop
  40046a:       90                      nop
  40046b:       90                      nop
  40046c:       90                      nop
  40046d:       90                      nop
  40046e:       90                      nop
  40046f:       90                      nop

0000000000400470 <__do_global_dtors_aux>:
  400470:       55                      push   %rbp
  400471:       48 89 e5                mov    %rsp,%rbp
  400474:       53                      push   %rbx
  400475:       48 83 ec 08             sub    $0x8,%rsp
  400479:       80 3d d8 04 20 00 00    cmpb   $0x0,0x2004d8(%rip)        # 600958 <__bss_start>
  400480:       75 4b                   jne    4004cd <__do_global_dtors_aux+0x5d>
  400482:       bb 78 07 60 00          mov    $0x600778,%ebx
  400487:       48 8b 05 d2 04 20 00    mov    0x2004d2(%rip),%rax        # 600960 .6349>
  40048e:       48 81 eb 70 07 60 00    sub    $0x600770,%rbx
  400495:       48 c1 fb 03             sar    $0x3,%rbx
  400499:       48 83 eb 01             sub    $0x1,%rbx
  40049d:       48 39 d8                cmp    %rbx,%rax
  4004a0:       73 24                   jae    4004c6 <__do_global_dtors_aux+0x56>
  4004a2:       66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)
  4004a8:       48 83 c0 01             add    $0x1,%rax
  4004ac:       48 89 05 ad 04 20 00    mov    %rax,0x2004ad(%rip)        # 600960 .6349>
  4004b3:       ff 14 c5 70 07 60 00    callq  *0x600770(,%rax,8)
  4004ba:       48 8b 05 9f 04 20 00    mov    0x20049f(%rip),%rax        # 600960 .6349>
  4004c1:       48 39 d8                cmp    %rbx,%rax
  4004c4:       72 e2                   jb     4004a8 <__do_global_dtors_aux+0x38>
  4004c6:       c6 05 8b 04 20 00 01    movb   $0x1,0x20048b(%rip)        # 600958 <__bss_start>
  4004cd:       48 83 c4 08             add    $0x8,%rsp
  4004d1:       5b                      pop    %rbx
  4004d2:       c9                      leaveq 
  4004d3:       c3                      retq   
  4004d4:       66 66 66 2e 0f 1f 84    data32 data32 nopw %cs:0x0(%rax,%rax,1)
  4004db:       00 00 00 00 00 

00000000004004e0 :
  4004e0:       48 83 3d 98 02 20 00    cmpq   $0x0,0x200298(%rip)        # 600780 <__JCR_END__>
  4004e7:       00 
  4004e8:       55                      push   %rbp
  4004e9:       48 89 e5                mov    %rsp,%rbp
  4004ec:       74 12                   je     400500 0x20>
  4004ee:       b8 00 00 00 00          mov    $0x0,%eax
  4004f3:       48 85 c0                test   %rax,%rax
  4004f6:       74 08                   je     400500 0x20>
  4004f8:       bf 80 07 60 00          mov    $0x600780,%edi
  4004fd:       c9                      leaveq 
  4004fe:       ff e0                   jmpq   *%rax
  400500:       c9                      leaveq 
  400501:       c3                      retq   
  400502:       90                      nop
  400503:       90                      nop

0000000000400504 
: 400504: 55 push %rbp 400505: 48 89 e5 mov %rsp,%rbp 400508: 48 83 ec 20 sub $0x20,%rsp 40050c: 89 7d ec mov %edi,-0x14(%rbp) 40050f: 48 89 75 e0 mov %rsi,-0x20(%rbp) 400513: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%rbp) 40051a: bf 78 06 40 00 mov $0x400678,%edi 40051f: e8 dc fe ff ff callq 400400 @plt> 400524: 8b 15 2a 04 20 00 mov 0x20042a(%rip),%edx # 600954 40052a: b8 84 06 40 00 mov $0x400684,%eax 40052f: 89 d6 mov %edx,%esi 400531: 48 89 c7 mov %rax,%rdi 400534: b8 00 00 00 00 mov $0x0,%eax 400539: e8 b2 fe ff ff callq 4003f0 @plt> 40053e: 8b 15 24 04 20 00 mov 0x200424(%rip),%edx # 600968 400544: b8 96 06 40 00 mov $0x400696,%eax 400549: 89 d6 mov %edx,%esi 40054b: 48 89 c7 mov %rax,%rdi 40054e: b8 00 00 00 00 mov $0x0,%eax 400553: e8 98 fe ff ff callq 4003f0 @plt> 400558: b8 aa 06 40 00 mov $0x4006aa,%eax 40055d: 8b 55 fc mov -0x4(%rbp),%edx 400560: 89 d6 mov %edx,%esi 400562: 48 89 c7 mov %rax,%rdi 400565: b8 00 00 00 00 mov $0x0,%eax 40056a: e8 81 fe ff ff callq 4003f0 @plt> 40056f: b8 00 00 00 00 mov $0x0,%eax 400574: c9 leaveq 400575: c3 retq 400576: 90 nop 400577: 90 nop 400578: 90 nop 400579: 90 nop 40057a: 90 nop 40057b: 90 nop 40057c: 90 nop 40057d: 90 nop 40057e: 90 nop 40057f: 90 nop 0000000000400580 <__libc_csu_fini>: 400580: f3 c3 repz retq 400582: 66 66 66 66 66 2e 0f data32 data32 data32 data32 nopw %cs:0x0(%rax,%rax,1) 400589: 1f 84 00 00 00 00 00 0000000000400590 <__libc_csu_init>: 400590: 48 89 6c 24 d8 mov %rbp,-0x28(%rsp) 400595: 4c 89 64 24 e0 mov %r12,-0x20(%rsp) 40059a: 48 8d 2d bb 01 20 00 lea 0x2001bb(%rip),%rbp # 60075c <__init_array_end> 4005a1: 4c 8d 25 b4 01 20 00 lea 0x2001b4(%rip),%r12 # 60075c <__init_array_end> 4005a8: 4c 89 6c 24 e8 mov %r13,-0x18(%rsp) 4005ad: 4c 89 74 24 f0 mov %r14,-0x10(%rsp) 4005b2: 4c 89 7c 24 f8 mov %r15,-0x8(%rsp) 4005b7: 48 89 5c 24 d0 mov %rbx,-0x30(%rsp) 4005bc: 48 83 ec 38 sub $0x38,%rsp 4005c0: 4c 29 e5 sub %r12,%rbp 4005c3: 41 89 fd mov %edi,%r13d 4005c6: 49 89 f6 mov %rsi,%r14 4005c9: 48 c1 fd 03 sar $0x3,%rbp 4005cd: 49 89 d7 mov %rdx,%r15 4005d0: e8 f3 fd ff ff callq 4003c8 <_init> 4005d5: 48 85 ed test %rbp,%rbp 4005d8: 74 1c je 4005f6 <__libc_csu_init+0x66> 4005da: 31 db xor %ebx,%ebx 4005dc: 0f 1f 40 00 nopl 0x0(%rax) 4005e0: 4c 89 fa mov %r15,%rdx 4005e3: 4c 89 f6 mov %r14,%rsi 4005e6: 44 89 ef mov %r13d,%edi 4005e9: 41 ff 14 dc callq *(%r12,%rbx,8) 4005ed: 48 83 c3 01 add $0x1,%rbx 4005f1: 48 39 eb cmp %rbp,%rbx 4005f4: 72 ea jb 4005e0 <__libc_csu_init+0x50> 4005f6: 48 8b 5c 24 08 mov 0x8(%rsp),%rbx 4005fb: 48 8b 6c 24 10 mov 0x10(%rsp),%rbp 400600: 4c 8b 64 24 18 mov 0x18(%rsp),%r12 400605: 4c 8b 6c 24 20 mov 0x20(%rsp),%r13 40060a: 4c 8b 74 24 28 mov 0x28(%rsp),%r14 40060f: 4c 8b 7c 24 30 mov 0x30(%rsp),%r15 400614: 48 83 c4 38 add $0x38,%rsp 400618: c3 retq 400619: 90 nop 40061a: 90 nop 40061b: 90 nop 40061c: 90 nop 40061d: 90 nop 40061e: 90 nop 40061f: 90 nop 0000000000400620 <__do_global_ctors_aux>: 400620: 55 push %rbp 400621: 48 89 e5 mov %rsp,%rbp 400624: 53 push %rbx 400625: 48 83 ec 08 sub $0x8,%rsp 400629: 48 8b 05 30 01 20 00 mov 0x200130(%rip),%rax # 600760 <__CTOR_LIST__> 400630: 48 83 f8 ff cmp $0xffffffffffffffff,%rax 400634: 74 19 je 40064f <__do_global_ctors_aux+0x2f> 400636: bb 60 07 60 00 mov $0x600760,%ebx 40063b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1) 400640: 48 83 eb 08 sub $0x8,%rbx 400644: ff d0 callq *%rax 400646: 48 8b 03 mov (%rbx),%rax 400649: 48 83 f8 ff cmp $0xffffffffffffffff,%rax 40064d: 75 f1 jne 400640 <__do_global_ctors_aux+0x20> 40064f: 48 83 c4 08 add $0x8,%rsp 400653: 5b pop %rbx 400654: c9 leaveq 400655: c3 retq 400656: 90 nop 400657: 90 nop

下面使用objdump反汇编查看.data的内容:
$objdump -d -j .data test
.data区保存的是初始化的全局变量。

test:     file format elf64-x86-64


Disassembly of section .data:

0000000000600950 <__data_start>:
  600950:       00 00                   add    %al,(%rax)
        ...

0000000000600954 :
  600954:       04 00 00 00  

下面使用objdump反汇编查看.bss的内容:
$objdump -d -j .bss test
.bss区保存的是未初始化的全局变量,linux会默认将未初始化的变量置为0。


test:     file format elf64-x86-64


Disassembly of section .bss:

0000000000600958 :
        ...

0000000000600960 :
        ...

0000000000600968 :
        ...

下面命令可以看到test文件中所有的符号:
$readelf -s test
Value的值是符号的地址。

Symbol table '.dynsym' contains 5 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND printf@GLIBC_2.2.5 (2)
     2: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__
     3: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND puts@GLIBC_2.2.5 (2)
     4: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC_2.2.5 (2)

Symbol table '.symtab' contains 67 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000400200     0 SECTION LOCAL  DEFAULT    1 
     2: 000000000040021c     0 SECTION LOCAL  DEFAULT    2 
     3: 000000000040023c     0 SECTION LOCAL  DEFAULT    3 
     4: 0000000000400260     0 SECTION LOCAL  DEFAULT    4 
     5: 0000000000400280     0 SECTION LOCAL  DEFAULT    5 
     6: 00000000004002f8     0 SECTION LOCAL  DEFAULT    6 
     7: 000000000040033c     0 SECTION LOCAL  DEFAULT    7 
     8: 0000000000400348     0 SECTION LOCAL  DEFAULT    8 
     9: 0000000000400368     0 SECTION LOCAL  DEFAULT    9 
    10: 0000000000400380     0 SECTION LOCAL  DEFAULT   10 
    11: 00000000004003c8     0 SECTION LOCAL  DEFAULT   11 
    12: 00000000004003e0     0 SECTION LOCAL  DEFAULT   12 
    13: 0000000000400420     0 SECTION LOCAL  DEFAULT   13 
    14: 0000000000400658     0 SECTION LOCAL  DEFAULT   14 
    15: 0000000000400668     0 SECTION LOCAL  DEFAULT   15 
    16: 00000000004006bc     0 SECTION LOCAL  DEFAULT   16 
    17: 00000000004006e0     0 SECTION LOCAL  DEFAULT   17 
    18: 0000000000600760     0 SECTION LOCAL  DEFAULT   18 
    19: 0000000000600770     0 SECTION LOCAL  DEFAULT   19 
    20: 0000000000600780     0 SECTION LOCAL  DEFAULT   20 
    21: 0000000000600788     0 SECTION LOCAL  DEFAULT   21 
    22: 0000000000600918     0 SECTION LOCAL  DEFAULT   22 
    23: 0000000000600920     0 SECTION LOCAL  DEFAULT   23 
    24: 0000000000600950     0 SECTION LOCAL  DEFAULT   24 
    25: 0000000000600958     0 SECTION LOCAL  DEFAULT   25 
    26: 0000000000000000     0 SECTION LOCAL  DEFAULT   26 
    27: 000000000040044c     0 FUNC    LOCAL  DEFAULT   13 call_gmon_start
    28: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS crtstuff.c
    29: 0000000000600760     0 OBJECT  LOCAL  DEFAULT   18 __CTOR_LIST__
    30: 0000000000600770     0 OBJECT  LOCAL  DEFAULT   19 __DTOR_LIST__
    31: 0000000000600780     0 OBJECT  LOCAL  DEFAULT   20 __JCR_LIST__
    32: 0000000000400470     0 FUNC    LOCAL  DEFAULT   13 __do_global_dtors_aux
    33: 0000000000600958     1 OBJECT  LOCAL  DEFAULT   25 completed.6347
    34: 0000000000600960     8 OBJECT  LOCAL  DEFAULT   25 dtor_idx.6349
    35: 00000000004004e0     0 FUNC    LOCAL  DEFAULT   13 frame_dummy
    36: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS crtstuff.c
    37: 0000000000600768     0 OBJECT  LOCAL  DEFAULT   18 __CTOR_END__
    38: 0000000000400758     0 OBJECT  LOCAL  DEFAULT   17 __FRAME_END__
    39: 0000000000600780     0 OBJECT  LOCAL  DEFAULT   20 __JCR_END__
    40: 0000000000400620     0 FUNC    LOCAL  DEFAULT   13 __do_global_ctors_aux
    41: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS test.c
    42: 0000000000600920     0 OBJECT  LOCAL  DEFAULT   23 _GLOBAL_OFFSET_TABLE_
    43: 000000000060075c     0 NOTYPE  LOCAL  DEFAULT   18 __init_array_end
    44: 000000000060075c     0 NOTYPE  LOCAL  DEFAULT   18 __init_array_start
    45: 0000000000600788     0 OBJECT  LOCAL  DEFAULT   21 _DYNAMIC
    46: 0000000000600950     0 NOTYPE  WEAK   DEFAULT   24 data_start
    47: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND printf@@GLIBC_2.2.5
    48: 0000000000400580     2 FUNC    GLOBAL DEFAULT   13 __libc_csu_fini
    49: 0000000000400420     0 FUNC    GLOBAL DEFAULT   13 _start
    50: 0000000000600968     4 OBJECT  GLOBAL DEFAULT   25 global_data_2
    51: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__
    52: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _Jv_RegisterClasses
    53: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND puts@@GLIBC_2.2.5
    54: 0000000000400658     0 FUNC    GLOBAL DEFAULT   14 _fini
    55: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@@GLIBC_
    56: 0000000000400668     4 OBJECT  GLOBAL DEFAULT   15 _IO_stdin_used
    57: 0000000000600950     0 NOTYPE  GLOBAL DEFAULT   24 __data_start
    58: 0000000000400670     0 OBJECT  GLOBAL HIDDEN    15 __dso_handle
    59: 0000000000600778     0 OBJECT  GLOBAL HIDDEN    19 __DTOR_END__
    60: 0000000000400590   137 FUNC    GLOBAL DEFAULT   13 __libc_csu_init
    61: 0000000000600958     0 NOTYPE  GLOBAL DEFAULT  ABS __bss_start
    62: 0000000000600970     0 NOTYPE  GLOBAL DEFAULT  ABS _end
    63: 0000000000600958     0 NOTYPE  GLOBAL DEFAULT  ABS _edata
    64: 0000000000600954     4 OBJECT  GLOBAL DEFAULT   24 global_data
    65: 0000000000400504   114 FUNC    GLOBAL DEFAULT   13 main
    66: 00000000004003c8     0 FUNC    GLOBAL DEFAULT   11 _init

下面命令来查看文件的段信息:
$readelf -l test
区到段的映射,基本上是按照区的顺序进行映射。
如果Flags为R和E,表示该段可读和可执行。
如果Flags为W,表示该段可写。
VirtAddr是每个段的虚拟起始地址。这个地址并不是位于真正内存上的地址(物理地址)。

Elf file type is EXEC (Executable file)
Entry point 0x400420
There are 8 program headers, starting at offset 64

Program Headers:
  Type           Offset             VirtAddr           PhysAddr
                 FileSiz            MemSiz              Flags  Align
  PHDR           0x0000000000000040 0x0000000000400040 0x0000000000400040
                 0x00000000000001c0 0x00000000000001c0  R E    8
  INTERP         0x0000000000000200 0x0000000000400200 0x0000000000400200
                 0x000000000000001c 0x000000000000001c  R      1
      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
  LOAD           0x0000000000000000 0x0000000000400000 0x0000000000400000
                 0x000000000000075c 0x000000000000075c  R E    200000
  LOAD           0x0000000000000760 0x0000000000600760 0x0000000000600760
                 0x00000000000001f8 0x0000000000000210  RW     200000
  DYNAMIC        0x0000000000000788 0x0000000000600788 0x0000000000600788
                 0x0000000000000190 0x0000000000000190  RW     8
  NOTE           0x000000000000021c 0x000000000040021c 0x000000000040021c
                 0x0000000000000044 0x0000000000000044  R      4
  GNU_EH_FRAME   0x00000000000006bc 0x00000000004006bc 0x00000000004006bc
                 0x0000000000000024 0x0000000000000024  R      4
  GNU_STACK      0x0000000000000000 0x0000000000000000 0x0000000000000000
                 0x0000000000000000 0x0000000000000000  RW     8

 Section to Segment mapping:
  Segment Sections...
   00     
   01     .interp 
   02     .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame 
   03     .ctors .dtors .jcr .dynamic .got .got.plt .data .bss 
   04     .dynamic 
   05     .note.ABI-tag .note.gnu.build-id 
   06     .eh_frame_hdr 
   07     

如上所示,段有多种类型,下面介绍LOAD类型
LOAD:该段的内容从可执行文件中获取。Offset标识内核从文件读取的位置。FileSiz标识读取多少字节。

那么,执行test之后的进程的段布局是如何呢?
可以通过cat /proc/pid/maps来查看。pid是进程的pid。
但是该test运行时间很短,可以使用gdb加断点来运行,或者在return语句之前加上sleep()。

下面使用gdb加断点的形式:

GNU gdb (GDB) Red Hat Enterprise Linux (7.2-50.el6)
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /data/readyao/qqlive_zb_prj/server/cgi_push_post_replay/lib/test...(no debugging symbols found)...done.
(gdb) b main
Breakpoint 1 at 0x400508
(gdb) r
Starting program: /data/readyao/qqlive_zb_prj/server/cgi_push_post_replay/lib/test 
[Thread debugging using libthread_db enabled]

Breakpoint 1, 0x0000000000400508 in main ()
Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.49.tl1.x86_64

$cat /proc/6929/maps

00400000-00401000 r-xp 00000000 ca:11 8626925                            /test
00600000-00601000 rw-p 00000000 ca:11 8626925                            /test
7ffff762d000-7ffff7644000 r-xp 00000000 ca:01 332328                     /lib64/libpthread-2.12.so
7ffff7644000-7ffff7843000 ---p 00017000 ca:01 332328                     /lib64/libpthread-2.12.so
7ffff7843000-7ffff7844000 r--p 00016000 ca:01 332328                     /lib64/libpthread-2.12.so
7ffff7844000-7ffff7845000 rw-p 00017000 ca:01 332328                     /lib64/libpthread-2.12.so
7ffff7845000-7ffff7849000 rw-p 00000000 00:00 0 
7ffff7849000-7ffff784b000 r-xp 00000000 ca:01 332237                     /lib64/libdl-2.12.so
7ffff784b000-7ffff7a4b000 ---p 00002000 ca:01 332237                     /lib64/libdl-2.12.so
7ffff7a4b000-7ffff7a4c000 r--p 00002000 ca:01 332237                     /lib64/libdl-2.12.so
7ffff7a4c000-7ffff7a4d000 rw-p 00003000 ca:01 332237                     /lib64/libdl-2.12.so
7ffff7a4d000-7ffff7bd3000 r-xp 00000000 ca:01 332102                     /lib64/libc-2.12.so
7ffff7bd3000-7ffff7dd3000 ---p 00186000 ca:01 332102                     /lib64/libc-2.12.so
7ffff7dd3000-7ffff7dd7000 r--p 00186000 ca:01 332102                     /lib64/libc-2.12.so
7ffff7dd7000-7ffff7dd8000 rw-p 0018a000 ca:01 332102                     /lib64/libc-2.12.so
7ffff7dd8000-7ffff7ddd000 rw-p 00000000 00:00 0 
7ffff7ddd000-7ffff7dfd000 r-xp 00000000 ca:01 332126                     /lib64/ld-2.12.so
7ffff7ed9000-7ffff7edc000 rw-p 00000000 00:00 0 
7ffff7eeb000-7ffff7eee000 r-xp 00000000 ca:01 336319                     /lib64/libonion_security.so.1.0.13
7ffff7eee000-7ffff7fee000 ---p 00003000 ca:01 336319                     /lib64/libonion_security.so.1.0.13
7ffff7fee000-7ffff7fef000 rw-p 00003000 ca:01 336319                     /lib64/libonion_security.so.1.0.13
7ffff7fef000-7ffff7ffb000 rw-p 00000000 00:00 0 
7ffff7ffb000-7ffff7ffc000 r-xp 00000000 00:00 0                          [vdso]
7ffff7ffc000-7ffff7ffd000 r--p 0001f000 ca:01 332126                     /lib64/ld-2.12.so
7ffff7ffd000-7ffff7ffe000 rw-p 00020000 ca:01 332126                     /lib64/ld-2.12.so
7ffff7ffe000-7ffff7fff000 rw-p 00000000 00:00 0 
7ffffffea000-7ffffffff000 rw-p 00000000 00:00 0                          [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]

前面一部分是VMA的起始地址和结束地址。
最后一部分是该区域内容所属文件。
在32位系统中,进程地址空间为4G,分为用户空间和内核空间。
readelf命令和ELF文件详解_第1张图片
从下面可以看到栈的地址是向下生长,堆的地址是向上生长。
readelf命令和ELF文件详解_第2张图片

参考资料:
http://www.linuxforums.org/articles/understanding-elf-using-readelf-and-objdump_125.html

http://www.linuxjournal.com/article/1059
http://www.linuxjournal.com/article/1060
Two good ELF introductory articles written by Eric Youngdale.

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
Explanation about ELF from Wikipedia. From there, you can find links to another useful documents.

http://x86.ddj.com/ftp/manuals/tools/elf.pdf
The document that completely explain all about ELF structure. Study this document after reading this article to gain complete insight about ELF.

ELFSH
A tool to do ELF binary inspection and manipulation. Pretty useful for reverse engineering too. It has scripting feature so you can automate most of your work. In the website, there are many documents that explains various ELF hacking.

你可能感兴趣的:(工作)