http://www.52rd.com/Blog/Detail_RD.Blog_Roddger_4627.html?WebShieldDRSessionVerify=YvUONIqdZoMhZUydGb0H
作者:Blackbird文章出处:友善之臂旅店
在3D图形编程中,经常要求平方根或平方根的倒数,例如:求向量的长度或将向量归一化。C数学函数库中的sqrt具有理想的精度,但对于3D游戏程式来说速度太慢。我们希望能够在保证足够的精度的同时,进一步提高速度。
Carmack在QUAKE3中使用了下面的算法,它第一次在公众场合出现的时候,几乎震住了所有的人。据说该算法其实并不是Carmack发明的,它真正的作者是Nvidia的Gary Tarolli(未经证实)。
// // 计算参数x的平方根的倒数 // float InvSqrt (float x) { float xhalf = 0.5f*x; int i = *(int*)&x; i = 0x5f3759df - (i >> 1); // 计算第一个近似根 x = *(float*)&i; x = x*(1.5f - xhalf*x*x); // 牛顿迭代法 return x; }
该算法的本质其实就是牛顿迭代法(Newton-Raphson Method,简称NR),而NR的基础则是泰勒级数(Taylor Series)。NR是一种求方程的近似根的方法。首先要估计一个与方程的根比较靠近的数值,然后根据公式推算下一个更加近似的数值,不断重复直到可以获得满意的精度。其公式如下:
函数:y=f(x) 其一阶导数为:y'=f'(x) 则方程:f(x)=0 的第n+1个近似根为 x[n+1] = x[n] - f(x[n]) / f'(x[n])NR最关键的地方在于估计第一个近似根。如果该近似根与真根足够靠近的话,那么只需要少数几次迭代,就可以得到满意的解。
现在回过头来看看如何利用牛顿法来解决我们的问题。求平方根的倒数,实际就是求方程1/(x^2)-a=0的解。将该方程按牛顿迭代法的公式展开为:
x[n+1]=1/2*x[n]*(3-a*x[n]*x[n])将1/2放到括号里面,就得到了上面那个函数的倒数第二行。
接着,我们要设法估计第一个近似根。这也是上面的函数最神奇的地方。它通过某种方法算出了一个与真根非常接近的近似根,因此它只需要使用一次迭代过程就获得了较满意的解。它是怎样做到的呢?所有的奥妙就在于这一行:
i = 0x5f3759df - (i >> 1); // 计算第一个近似根
超级莫名其妙的语句,不是吗?但仔细想一下的话,还是可以理解的。我们知道,IEEE标准下,float类型的数据在32位系统上是这样表示的(大体来说就是这样,但省略了很多细节,有兴趣可以GOOGLE):
bits:31 30 ... 0 31:符号位 30-23:共8位,保存指数(E) 22-0:共23位,保存尾数(M)
所以,32位的浮点数用十进制实数表示就是:M*2^E。开根然后倒数就是:M^(-1/2)*2^(-E/2)。现在就十分清晰了。语句i>>1其工作就是将指数除以2,实现2^(E/2)的部分。而前面用一个常数减去它,目的就是得到M^(1/2)同时反转所有指数的符号。
至于那个0x5f3759df,呃,我只能说,的确是一个超级的Magic Number。
那个Magic Number是可以推导出来的,但我并不打算在这里讨论,因为实在太繁琐了。简单来说,其原理如下:因为IEEE的浮点数中,尾数M省略了最前面的1,所以实际的尾数是1+M。如果你在大学上数学课没有打瞌睡的话,那么当你看到(1+M)^(-1/2)这样的形式时,应该会马上联想的到它的泰勒级数展开,而该展开式的第一项就是常数。下面给出简单的推导过程:
对于实数R>0,假设其在IEEE的浮点表示中, 指数为E,尾数为M,则: R^(-1/2) = (1+M)^(-1/2) * 2^(-E/2) 将(1+M)^(-1/2)按泰勒级数展开,取第一项,得: 原式 = (1-M/2) * 2^(-E/2) = 2^(-E/2) - (M/2) * 2^(-E/2) 如果不考虑指数的符号的话, (M/2)*2^(E/2)正是(R>>1), 而在IEEE表示中,指数的符号只需简单地加上一个偏移即可, 而式子的前半部分刚好是个常数,所以原式可以转化为: 原式 = C - (M/2)*2^(E/2) = C - (R>>1),其中C为常数 所以只需要解方程: R^(-1/2) = (1+M)^(-1/2) * 2^(-E/2) = C - (R>>1) 求出令到相对误差最小的C值就可以了
上面的推导过程只是我个人的理解,并未得到证实。而Chris Lomont则在他的论文中详细讨论了最后那个方程的解法,并尝试在实际的机器上寻找最佳的常数C。有兴趣的朋友可以在文末找到他的论文的链接。
所以,所谓的Magic Number,并不是从N元宇宙的某个星系由于时空扭曲而掉到地球上的,而是几百年前就有的数学理论。只要熟悉NR和泰勒级数,你我同样有能力作出类似的优化。
在GameDev.net上有人做过测试,该函数的相对误差约为0.177585%,速度比C标准库的sqrt提高超过20%。如果增加一次迭代过程,相对误差可以降低到e-004的级数,但速度也会降到和sqrt差不多。据说在DOOM3中,Carmack通过查找表进一步优化了该算法,精度近乎完美,而且速度也比原版提高了一截(正在努力弄源码,谁有发我一份)。
值得注意的是,在Chris Lomont的演算中,理论上最优秀的常数(精度最高)是0x5f37642f,并且在实际测试中,如果只使用一次迭代的话,其效果也是最好的。但奇怪的是,经过两次NR后,在该常数下解的精度将降低得非常厉害(天知道是怎么回事!)。经过实际的测试,Chris Lomont认为,最优秀的常数是0x5f375a86。如果换成64位的double版本的话,算法还是一样的,而最优常数则为0x5fe6ec85e7de30da(又一个令人冒汗的Magic Number - -b)。
这个算法依赖于浮点数的内部表示和字节顺序,所以是不具移植性的。如果放到Mac上跑就会挂掉。如果想具备可移植性,还是乖乖用sqrt好了。但算法思想是通用的。大家可以尝试推算一下相应的平方根算法。
下面给出Carmack在QUAKE3中使用的平方根算法。Carmack已经将QUAKE3的所有源代码捐给开源了,所以大家可以放心使用,不用担心会收到律师信。
// // Carmack在QUAKE3中使用的计算平方根的函数 // float CarmSqrt(float x){ union{ int intPart; float floatPart; } convertor; union{ int intPart; float floatPart; } convertor2; convertor.floatPart = x; convertor2.floatPart = x; convertor.intPart = 0x1FBCF800 + (convertor.intPart >> 1); convertor2.intPart = 0x5f3759df - (convertor2.intPart >> 1); return 0.5f*(convertor.floatPart + (x * convertor2.floatPart)); }
另一个基于同样算法的更高速度的sqrt实现如下。其只是简单地将指数除以2,并没有考虑尾数的方根。要看懂该代码的话必须知道,在IEEE浮点数的格式中,E是由实际的指数加127得到的。例如,如果实数是0.1234*2^10,在浮点表示中,E(第23-30位)的值其实为10+127=137。所以下面的代码中,要处理127偏移,这就是常数0x3f800000的作用。我没实际测试过该函数,所以对其优劣无从评论,但估计其精度应该会降低很多。
float Faster_Sqrtf(float f) { float result; _asm { mov eax, f sub eax, 0x3f800000 sar eax, 1 add eax, 0x3f800000 mov result, eax } return result; }
除了基于NR的方法外,其他常见的快速算法还有多项式逼近。下面的函数取自《3D游戏编程大师技巧》,它使用一个多项式来近似替代原来的长度方程,但我搞不清楚作者使用的公式是怎么推导出来的(如果你知道的话请告诉我,谢谢)。
// // 这个函数计算从(0,0)到(x,y)的距离,相对误差为3.5% // int FastDistance2D(int x, int y) { x = abs(x); y = abs(y); int mn = MIN(x,y); return(x+y-(mn>>1)-(mn>>2)+(mn>>4)); } // // 该函数计算(0,0,0)到(x,y,z)的距离,相对误差为8% // float FastDistance3D(float fx, float fy, float fz) { int temp; int x,y,z; // 确保所有的值为正 x = int(fabs(fx) * 1024); y = int(fabs(fy) * 1024); z = int(fabs(fz) * 1024); // 排序 if (y < x) SWAP(x,y,temp) if (z < y) SWAP(y,z,temp) if (y < x) SWAP(x,y,temp) int dist = (z + 11 * (y >> 5) + (x >> 2) ); return((float)(dist >> 10)); }
还有一种方法称为Distance Estimates(距离评估?),如下图所示:
octagon(x,y) = min((1/√2) * (|x|+|y|), max(|x|,|y|))求出向量v1和v2的长度,则:
√(x^2+y^2) = (|v1|+|v2|)/2 * octagon(x,y)
到目前为止我们都在讨论浮点数的方根算法,接下来轮到整数的方根算法。也许有人认为对整型数据求方根无任何意义,因为会得到类似99^(1/2)=9的结果。通常情况下确实是这样,但当我们使用定点数的时候(定点数仍然被应用在很多系统上面,例如任天堂的GBA之类的手持设备),整数的方根算法就显得非常重要。对整数开平方的算法如下。我并不打算在这讨论它(事实是我也没有仔细考究,因为在短期内都不会用到- -b),但你可以在文末James Ulery的论文中找到非常详细的推导过程。
// // 为了阅读的需要,我在下面的宏定义中添加了换行符 // #define step(shift) if((0x40000000l >> shift) + sqrtVal <= val) { val -= (0x40000000l >> shift) + sqrtVal; sqrtVal = (sqrtVal >> 1) | (0x40000000l >> shift); } else { sqrtVal = sqrtVal >> 1; } // // 计算32位整数的平方根 // int32 xxgluSqrtFx(int32 val) { // Note: This fast square root function // only works with an even Q_FACTOR int32 sqrtVal = 0; step(0); step(2); step(4); step(6); step(8); step(10); step(12); step(14); step(16); step(18); step(20); step(22); step(24); step(26); step(28); step(30); if(sqrtVal < val) { ++sqrtVal; } sqrtVal <<= (Q_FACTOR)/2; return(sqrtVal); }
关于sqrt的话题早在2003年便已在 GameDev.net上得到了广泛的讨论(可见我实在非常火星了,当然不排除还有其他尚在冥王星的人,嘿嘿)。而尝试探究该话题则完全是出于本人的兴趣和好奇心(换句话说就是无知)。其实现在随着FPU的提升和对向量运算的硬件支持,大部分系统上都提供了快速的sqrt实现。如果是处理大批量的向量的话,据说最快的方法是使用SIMD(据说而已,我压根不懂),可同步计算4个向量。
这里是当年在GameDev.net的讨论,有趣的东西包括一些高手的评论和几个版本的sqrt的实测数值。
有关NR和泰勒级数的内容,请参见MathWorld。
还有两篇论文。一篇是关于Carmack算法的推导过程;另一篇是关于整数方根算法的推导过程: