大数据知识:Spark入门

Spark概述

Spark是一种快速、通用、可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。Spark得到了众多大数据公司的支持,这些公司包括Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于凤巢、大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的Spark集群。

Spark特点

与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。
大数据知识:Spark入门_第1张图片

易用

Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。
大数据知识:Spark入门_第2张图片

兼容性

Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。
大数据知识:Spark入门_第3张图片

编写第一个WordCount程序

程序需要的依赖


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>cn.itcast.sparkgroupId>
    <artifactId>spark-mvnartifactId>
    <version>1.0-SNAPSHOTversion>

    <properties>
        <maven.compiler.source>1.7maven.compiler.source>
        <maven.compiler.target>1.7maven.compiler.target>
        <encoding>UTF-8encoding>
        <scala.version>2.10.6scala.version>
        <scala.compat.version>2.10scala.compat.version>
    properties>

    <dependencies>
        <dependency>
            <groupId>org.scala-langgroupId>
            <artifactId>scala-libraryartifactId>
            <version>${scala.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-core_2.10artifactId>
            <version>1.5.2version>
        dependency>

        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming_2.10artifactId>
            <version>1.5.2version>
        dependency>

        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>2.6.2version>
        dependency>
    dependencies>

    <build>
        <sourceDirectory>src/main/scalasourceDirectory>
        <testSourceDirectory>src/test/scalatestSourceDirectory>
        <plugins>
            <plugin>
                <groupId>net.alchim31.mavengroupId>
                <artifactId>scala-maven-pluginartifactId>
                <version>3.2.0version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compilegoal>
                            <goal>testCompilegoal>
                        goals>
                        <configuration>
                            <args>
                                <arg>-make:transitivearg>
                                <arg>-dependencyfilearg>
                                <arg>${project.build.directory}/.scala_dependenciesarg>
                            args>
                        configuration>
                    execution>
                executions>
            plugin>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-surefire-pluginartifactId>
                <version>2.18.1version>
                <configuration>
                    <useFile>falseuseFile>
                    <disableXmlReport>truedisableXmlReport>
                    <includes>
                        <include>**/*Test.*include>
                        <include>**/*Suite.*include>
                    includes>
                configuration>
            plugin>

            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-shade-pluginartifactId>
                <version>2.3version>
                <executions>
                    <execution>
                        <phase>packagephase>
                        <goals>
                            <goal>shadegoal>
                        goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SFexclude>
                                        <exclude>META-INF/*.DSAexclude>
                                        <exclude>META-INF/*.RSAexclude>
                                    excludes>
                                filter>
                            filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>cn.edu.hust.spark.WordCountmainClass>
                                transformer>
                            transformers>
                        configuration>
                    execution>
                executions>
            plugin>
        plugins>
    build>
project>

使用Scala编写Spark程序

package cn.edu.hust.spark

import org.apache.spark.{SparkContext, SparkConf}

object WordCount {
  def main(args: Array[String]) {
    //创建SparkConf()并设置App名称
    val conf = new SparkConf().setAppName("WC")
    //创建SparkContext,该对象是提交spark App的入口
    val sc = new SparkContext(conf)
    //使用sc创建RDD并执行相应的transformation和action
    sc.textFile(args(0)).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_, 1).sortBy(_._2, false).saveAsTextFile(args(1))
    //停止sc,结束该任务
    sc.stop()
  }
}

启动Hadoop和Spark集群

启动hdfs
/usr/local/hadoop-2.6.1/sbin/start-dfs.sh
启动spark
/usr/local/spark-1.5.2-bin-hadoop2.6/sbin/start-all.sh

打包后提交集群运行

/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \
–class cn.edu.hust.spark.WordCount \
–master spark://node1:7077 \
–executor-memory 2G \
–total-executor-cores 4 \
/root/spark-mvn-1.0-SNAPSHOT.jar \
hdfs://node1:9000/words.txt \
hdfs://node1:9000/out

查看运行结果

hdfs dfs -cat hdfs://node1:9000/out/part-00000
(hello,6)
(tom,3)
(kitty,2)
(jerry,1)

你可能感兴趣的:(大数据,大数据框架知识)